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Network Topology

Simple Mathematical Models
for Interpreting Complex
Topology: ER Model & Small
World Networks



Models for networks of complex topology

« Erdos-Renyi (1960)
« Watts-Strogatz (1998)
« Barabasi-Albert (1999)

A Barabasi & R Albert
"Emergence of scaling in
random networks,"

Science 286, 509-512 (1999).




The Erdds-Rényi [ER] model (1960)
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« Start with N vertices and no edges
 Connect each pair of vertices with probability Py

Important result: many properties in these graphs appear quite suddenly, at
a threshold value of P.,(N)

-If Peg~Cc/N with c<1, then almost all vertices belong to isolated trees
-Cycles of all orders appear at P ~ 1/N



The Watts-Strogatz [WS] model (1998)

Regular Small-world Random

Increasing randomness

« Start with a regular network with N vertices
* Rewire each edge with probability p

For p=0 (Regular Networks): For p=1 (Random Networks):
high clustering coefficient low clustering coefficient
*high characteristic path length *low characteristic path length

QUESTION: What happens for intermediate values of p?



1) There is a broad interval of p for which L is small but C remains large
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2) Small world networks are common :

Table 1 Empirical examples of small-world networks

Ir—au:tuzll L random Cactual Igranu:lu:um
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.0a0 0.005

C. elegans 2.65 2.25 0.28 Q.05



Small world network

 Asimple connected graph G exhibiting two properties:

— Large Clustering Coefficient: Each vertex of G is linked to a relatively well-
connected set of neighboring vertices, resulting in a large value for the
clustering coefficient C(G);

— Small Characteristic Path Length: The presence of short-cut connections
between some vertices results in a small characteristic path length L(G).

Regular Small-world Random

Increasing randomness

* local connectivity and global reach

Watts and Strogatz (1998), Nature, Collective dynamics of ‘small-world” networks




Network Topology

Simple Mathematical Models
for Interpreting Complex
Topology: BA Model & Scale
Free Networks



[From Barabasi & Bonabeau, Sci. Am., May '03]

Random v Scale-free Networks

RANDOM NETWORKS, which resemble the U.S. highway system
(simplified in left map), consist of nodes with randomly placed
connections. In such systems, a plot of the distribution of node
linkages will follow a bell-shaped curve (left graph), with most
nodes having approximately the same number of links.

In contrast, scale-free networks, which resemble the U.S.
airline system (simplified in right map), contain hubs (red)—

Random Network

nodes with a very high number of links. In such networks, the
distribution of node linkages follows a power law (center graph)
in that most nodes have just a few connections and some have
a tremendous number of links. Inthat sense, the system has no
“scale.” The defining characteristic of such networks is that the
distribution of links, if plotted on a double-logarithmic scale
(right graph), results in a straight line.

Scale-Free Network

Bell Curve Distribution of Node Linkages

— Typical node

Number of Nodes

Number of Links

Power Law Distribution of Node Linkages

Number of Nodes
Number of Nodes
(log scale)

Number of Links Number of Links [log scale)




The Barabasi-Albert [BA] model (1999)

Look at the distribution of degrees
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The probability of finding a
highly connected node
decreases exponentially with k
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@ two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

« GROWTH: starting with a small number of vertices m, at every timestep add
a new vertex with m = m,

* PREFERENTIAL ATTACHMENT: the probability 'l that a new vertex will be
connected to vertex i depends on the connectivity of that vertex:

[T(k) = Zk

{1 i =1 T =3 i
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Birth of Scale-Free Network

A SCALE-FREE NETWORK grows incrementally from two to 11 nodesin this example. When deciding where to establish a link, a new node
(green] prefers to attach to an existing node (red] that already has many other connections. These two basic mechanisms—growth
and preferential attachment—will eventually lead to the system’s being dominated by hubs, nodes having an enormous number of links.

[From Barabasi & Bonabeau, Sci. Am., May '03]

12



SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL
ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model

Description

e

The interaction
partners of A are
more likely to be
duplicated

Gene duplication

-~

* Theoretical work shows that a mechanism
of preferential attachment leads to a scale-
free topology

(“The rich get richer”)

* In interaction network, gene duplication
followed by mutation of the duplicated gene
is generally thought to lead to preferential
attachment

* Simple reasoning: The partners of a hub
are more likely to be duplicated than the
partners of a non-hub

Source: Albert et al. Rev. Mod. Phys. (2002) and Middendorf et al. PNAS (2005)
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