Biomedical Data Science (GersteinLab.org/courses/452) Unsupervised Datamining – SVD (23m9c)

Last edit in spring '23. Condensing by ~3 slide deletions 2022's 22m9c, which is similar to 2021's M9c [which has a video].

Mark Gerstein Yale U.

Unsupervised Mining

SVD

Puts together slides prepared by Brandon Xia with images from Alter et al. papers

SVD for microarray data (Alter et al, PNAS 2000)

$A = USV^T$

- A is any rectangular matrix $(m \ge n)$
- Row space: vector subspace generated by the row vectors of A
- Column space: vector subspace generated by the column vectors of A
 - The dimension of the row & column
 space is the rank of the matrix A: r (≤ n)
- A is a linear transformation that maps vector x in row space into vector Ax in column space

$A = \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}$

- U is an "orthogonal" matrix $(m \ge n)$
- Column vectors of U form an orthonormal basis for the column space of A: U^TU=I

$$U = \begin{pmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \\ | & | & | \end{pmatrix}$$

Eigenarrays

- $u_1, ..., u_n$ in U are eigenvectors of AA^T - $AA^T = USV^T VSU^T = US^2 U^T$
 - "Left singular vectors"

$A = USV^{T}$

- V is an orthogonal matrix (n by n)
- Column vectors of V form an orthonormal basis for the row space of A: V^TV=VV^T=I

Arrays

- "Right singular vectors"

$A = USV^T$

- S is a diagonal matrix (n by n) of nonnegative singular values
- Typically sorted from largest to smallest
- Singular values are the non-negative square root of corresponding eigenvalues of A^TA and AA^T

Eigengenes

4017HO HHHHH000100176001H

AV = US

- Means each $Av_i = s_i u_i$
- Remember A is a linear map from row space to column space
- Here, A maps an orthonormal basis {v_i} in row space into an orthonormal basis {u_i} in column space
- Each component of u_i is the projection of a row of the data matrix A onto the vector v_i

SVD as sum of rank-1 matrices

- $A = USV^T$
- $A = s_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + s_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T + \dots + s_n \boldsymbol{u}_n \boldsymbol{v}_n^T$
- an outer product (uv^T) giving a matrix rather than the scalar of the inner product
- What is the rank-r matrix \hat{A} that best approximates A ?

- Minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{A}_{ij} - A_{ij})^2$$

• $s_1 \ge s_2 \ge \ldots \ge s_n \ge 0$

LSQ approx. If r=1, this amounts to a line fit.

•
$$\hat{A} = s_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + s_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T + \dots + s_r \boldsymbol{u}_r \boldsymbol{v}_r^T$$

• Very useful for matrix approximation

Geometry of SVD in row space

- A as a collection of m row vectors (points) in the row space of A
- $s_1 u_1 v_1^T + s_2 u_2 v_2^T$ is the best rank-2 matrix approximation for A
- Geometrically: v₁ and v₂ are the directions of the best approximating rank-2 subspace that goes through origin
- s₁u₁ and s₂u₂ gives coordinates for row vectors in rank-2 subspace
- *v*₁ and *v*₂ gives coordinates for row space basis vectors in rank-2 subspace

$$A\mathbf{v}_{\mathbf{i}} = s_{i}\mathbf{u}_{\mathbf{i}}$$

$$I \mathbf{v}_{\mathbf{i}} = \mathbf{v}_{\mathbf{i}}$$
 10

Unsupervised Mining

Intuition on interpretation of SVD in terms of genes and conditions

Genes sorted by correlation with top 2 eigengenes

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106

Fig. 3. Genes sorted by relative correlation with $|\gamma_1\rangle_N$ and $|\gamma_2\rangle_N$ of normalized elutriation. (a) Normalized elutriation expression of the sorted 5,981 genes in the 14 arrays, showing traveling wave of expression. (b) Eigenarrays expression; the expression of $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$, the eigenarrays corresponding to $|\gamma_1\rangle_N$ and $|\gamma_2\rangle_N$, displays the sorting. (c) Expression levels of $|\alpha_1\rangle_N$ (red) and $|\alpha_2\rangle_N$ (green) fit normalized sine and cosine functions of period $Z \equiv N - 1 = 5,980$ and phase $\theta \approx 2\pi/13$ (blue), respectively.

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106

Fig. 2. Normalized elutriation expression in the subspace associated with the cell cycle. (a) Array correlation with $|\alpha_1\rangle_N$ along the *y*-axis vs. that with $|\alpha_2\rangle_N$ along the *x*-axis, color-coded according to the classification of the arrays into the five cell cycle stages, M/G₁ (yellow), G₁ (green), S (blue), S/G₂ (red), and G₂/M (orange). The dashed unit and half-unit circles outline 100% and 25% of overall normalized array expression in the $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ subspace. (b) Correlation of each gene with $|\gamma_1\rangle_N$ vs. that with $|\gamma_2\rangle_N$, for 784 cell cycle regulated genes, color-coded according to the classification by Spellman *et al.* (3).