Biomedical Data Science (GersteinLab.org/courses/452)
Unsupervised Datamining — SVD (23m9c)
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~3 slide deletions 2022’s 22m9c,
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Yale U. 2021’s M9c [which has a video].



Unsupervised Mining

SVD

Puts together slides prepared by
Brandon Xia with images from
Alter et al. papers



SVD for microarray data
(Alter et al, PNAS 2000)
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A = USV!

A is any rectangular matrix (m = n)

Row space: vector subspace
generated by the row vectors of A

Column space: vector subspace
generated by the column vectors of A
— The dimension of the row & column

space is the rank of the matrix A: r (< n)
A s a linear transformation that maps
vector X In row space into vector Ax
In column space
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A= USV!

« Uis an “orthogonal” matrix (m = n)

 Column vectors of U form an
orthonormal basis for the column on g SR
space of A: UTU=lI

Eigenarrays
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* u, .., U, in U are eigenvectors of AAT

— AAT=USVTVSUT=US2UT
— “Left singular vectors”



A= USV!

* Vs an orthogonal matrix (n by n)

* Column vectors of V form an
orthonormal basis for the row space of

A: VIV=vVvT=| Arrays
(] ) i
2
Vi=lv, v, -V,
S B
S y
* Vv, ..., V,InV are eigenvectors of ATA

— ATA=VSUTUSVT=VS§2 VT
— “Right singular vectors”



A = USV!

* S is a diagonal matrix (n by n) of non-
negative singular values

» Typically sorted from largest to
smallest

« Singular values are the non-negative
sguare root of corresponding
eigenvalues of ATA and AAT
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AV = US

Means each Av; = s;u;

Remember A is a linear map from row
space to column space

Here, A maps an orthonormal basis {v;} Iin

row space into an orthonormal basis {u;} In
column space

Each component of u; Is the projection of a
row of the data matrix A onto the vector v,

8
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SVD as sum of rank-1 matrices

an outer product
A= USVT (uvT) giving a

matrix rather than

_ T T T the scalar of the
A - S]_u]_V]_ + SZUZVZ T T Snunvn inner product
§,2S, 2...25,20

What is the rank-r matrix A that best
approximates A ?

- e . LSQ approx. If r=1,
_ m n 2
Minimize 2:2:(’%_'&“) ;c-hisa.mountstoa
i ine fit.

N

A=suv,"+s,uv, +... +suv’
Very useful for matrix approximation
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Geometry of SVD In row space

A as a collection of m row vectors
(points) in the row space of A

s,u,v," + s,u,Vv," is the best rank-2 matrix
approximation for A

Geometrically: v, and v, are the X
directions of the best approximating

rank-2 subspace that goes through

origin

s,U, and s,u, gives coordinates for row

vectors in rank-2 subspace AV,

v, and v, gives coordinates for row
space basis vectors in rank-2 subspace

IV- = V.| 10




Unsupervised Mining

Intuition on interpretation of SVD
In terms of genes and conditions



Genes sorted by correlation with top 2 eigengenes

(a) Arrays (b) Eigenarrays (c) Expression Level
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Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106

Fig. 3. Genes sorted by relative correlation with |y1}x and |y2)n of normalized elutriation. (a) Normalized elutriation expression of the sorted 5,981 genes in
the 14 arrays, showing traveling wave of expression. (b) Eigenarrays expression; the expression of |a1 )y and |az)w, the eigenarrays corresponding to |yiin and |y2)w,

displays the sorting. (c) Expression levels of |a1)y (red) and |az)n (green) fit normalized sine and cosine functions of period Z = N — 1 = 5,980 and phase
0 =~ 2m/13 (blue), respectively.
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Fig. 2. Normalized elutriation expression in the subspace
associated with the cell cycle. (a) Array correlation with |aq)x
along the y-axis vs. that with |az)y along the x-axis, color- Alter Or|y et al. (2000) Proc. Natl. Acad.
coded according to the classification of the arrays into the ’ Sci. USA 97. 10101-10106

five cell cycle stages, M/Gq (yellow), Gy (green), 5 (blue), S/Gz
(red), and G;/M (orange). The dashed unit and half-unit
circles outline 100% and 25% of overall normalized array
expression in the |aq)y and |}y subspace. (b) Correlation of
each gene with |yi)y vs. that with |y2)y, for 784 cell cycle
regulated genes, color-coded according to the classification
by Spellman et al. (3).
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