Biomedical Data Science (GersteinLab.org/courses/452) Unsupervised Datamining – SVD (23m9c)

Mark Gerstein Yale U.

Last edit in spring '23. Condensing by ~3 slide deletions 2022's 22m9c, which is similar to 2021's M9c [which has a video].

Unsupervised Mining

SVD

Puts together slides prepared by Brandon Xia with images from Alter et al. papers

SVD for microarray data (Alter et al, PNAS 2000)

3

- A is any rectangular matrix $(m \ge n)$
- Row space: vector subspace generated by the row vectors of A
- Column space: vector subspace generated by the column vectors of A
	- The dimension of the row & column space is the rank of the matrix A: r (\leq n)
- A is a linear transformation that maps vector x in row space into vector Ax in column space

- U is an "orthogonal" matrix $(m \ge n)$
- Column vectors of U form an orthonormal basis for the column space of A: *U^TU=I*

$$
A = USV^T
$$
\n'orthogonal" matrix (m ≥ n)

\nvector of U form an

\n"A: $U^TU=I$

\n"A: $U^TU=I$

\n"U =

\n
$$
\begin{pmatrix}\n\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \\
\mathbf{j} & \mathbf{k} & \mathbf{j}\n\end{pmatrix}
$$
\n"Covov's equation

\n"Bigens

\n"Bigens

\n"Bigens

\n"Bigens

\n"Bigens

\n"A"

\n"Bigens

\n"Bigens

\n"Bigens

\n"A"

\n"Bigens

\n"Cigens

\n"Cigens

\n"Digens

\n"Digens

\n"Digens

\n"Digens

\n"Digens

\n"Digens

\n"Digens

\n"Digens

- *u¹ , …, uⁿ* in *U* are eigenvectors of *AA^T* $-AA^T = USV^T$ *VSU^T* = *US*² *U*^T
	- "Left singular vectors"

- V is an orthogonal matrix (n by n)
- Column vectors of V form an orthonormal basis for the row space of A: *V^TV=VV^T=I*

6

- S is a diagonal matrix (n by n) of nonnegative singular values
- Typically sorted from largest to smallest
- Singular values are the non-negative square root of corresponding eigenvalues of *A^TA* and *AA^T*

Eigengenes

o⊣No HOUWARDIOD-0001-H

AV = US

- Means each $Av_i = s_i u_i$
- Remember A is a linear map from row space to column space
- Here, A maps an orthonormal basis $\{v_i\}$ in row space into an orthonormal basis $\{u_i\}$ in column space
- Each component of u_i is the projection of a row of the data matrix A onto the vector v_i

SVD as sum of rank-1 matrices

- $A = USV^T$
- $A = s_l u_l v_l^T + s_2 u_2 v_2^T + ... + s_n u_n v_n^T$
- an outer product (uv^{\dagger}) giving a matrix rather than the scalar of the inner product
- What is the rank-r matrix *A* that best approximates *A* ? $s_2 \mathbf{u}_2 \mathbf{v}_2^T + ...$
 $\geq s_n \geq 0$

rank-r matri
 $\leq A$?
 $\sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{A}_{ij} - A_{ij})^2$
 $s_2 \mathbf{u}_2 \mathbf{v}_2^T + ...$ $\nu_2^T + ...$
 i 0
 i matri
 i
 i
 $\left(\frac{1}{2}a_{ij} + a_{ij}\right)^2$
 $\left(\frac{1}{2}a_{ij} + a_{ij}\right)^2$ *s*₂*u*₂*v*
 i *s*_{*n*} **≥**
 i fank-
 i *s*₂*u*₂*v*
 *s*₂*u*₂*v* of rank-1 m
 $\sum_{2} \mathbf{v}_{2}^{T} + ... + s_{n} \mathbf{u}_{n} \mathbf{v}_{n}^{T}$

≥ 0
 $\left(\sum_{i=1}^{n} \mathbf{m}_{i} \mathbf{A}_{i} \right)^{2}$
 $\mathbf{A}_{ij} = \mathbf{A}_{ij} \mathbf{A}_{ij}^{2} + ... + s_{n} \mathbf{u}_{n} \mathbf{v}_{n}^{T}$
 $\mathbf{A}_{ij} = \mathbf{A}_{ij} \mathbf{A}_{ij}^{T}$ **um of rank-1 matrices**

an outer product
 $s_2u_2v_2^T + ... + s_nu_nv_n^T$
 $\geq s_n \geq 0$

rank-r matrix \hat{A} that best
 $\geq s_n \geq 0$
 $\geq \sum_{i=1}^n \sum_{j=1}^n (A_{ij} - A_{ij})^2$
 $\geq \sum_{i=1}^n \sum_{j=1}^n (A_{ij} - A_{ij})^2$
 $\geq \sum_{i=1}^n \sum_{j=$

$$
-\text{Minimize} \quad \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\hat{A}_{ij} - A_{ij}\right)^2
$$

• $s_1 \ge s_2 \ge ... \ge s_n \ge 0$

LSQ approx. If r=1, this amounts to a line fit.

- $\hat{A} = s_I u_I v_I^T + s_2 u_2 v_2^T + ... + s_r u_r v_r^T$ $\begin{array}{lll} \displaystyle\sum_{i=1}^N\sum_{j=1}^N\bigl(A_{ij}-A_{ij}\bigr) & \text{thus a} \ \hspace{2.5cm}\text{in} & \text{if} & \text{if} \ \bullet & \text{if} & \text{if} & \text{if}$
-

Geometry of SVD in row space

- A as a collection of m row vectors (points) in the row space of A
- $s_I u_I v_I^T + s_2 u_2 v_2^T$ is the best rank-2 matrix approximation for A
- Geometrically: v_1 and v_2 are the directions of the best approximating rank-2 subspace that goes through origin
- $s_i u_i$ and $s_j u_j$ gives coordinates for row vectors in rank-2 subspace
- *v¹* and *v²* gives coordinates for row space basis vectors in rank-2 subspace

$$
A \mathbf{v}_i = s_i \mathbf{u}_i
$$

$$
I \mathbf{v_i} = \mathbf{v_i} \Big| \text{ to}
$$

Unsupervised Mining

Intuition on interpretation of SVD in terms of genes and conditions

Genes sorted by correlation with top 2 eigengenes

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106

Fig. 3. Genes sorted by relative correlation with $|\gamma_1\rangle$ and $|\gamma_2\rangle$ of normalized elutriation. (a) Normalized elutriation expression of the sorted 5,981 genes in the 14 arrays, showing traveling wave of expression. (b) Eigenarrays expression; the expression of α_1)_N and α_2)_N, the eigenarrays corresponding to γ_1 _N and γ_2 _N, displays the sorting. (c) Expression levels of α_1 _N (red) and α_2 _N (green) fit normalized sine and cosine functions of period $Z = N - 1 = 5,980$ and phase $\theta \approx 2\pi/13$ (blue), respectively.

Normalized elutriation expression in the subspace associated with the cell cycle

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106

Fig. 2. Normalized elutriation expression in the subspace associated with the cell cycle. (a) Array correlation with α_1 _N along the y-axis vs. that with α_2 _N along the x-axis, colorcoded according to the classification of the arrays into the five cell cycle stages, M/G_1 (yellow), G_1 (green), S (blue), S/G_2 (red), and G_2/M (orange). The dashed unit and half-unit circles outline 100% and 25% of overall normalized array expression in the $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ subspace. (b) Correlation of each gene with $|y_1\rangle_N$ vs. that with $|y_2\rangle_N$, for 784 cell cycle regulated genes, color-coded according to the classification by Spellman et al. (3).