Biomed. Data Science:

Unsupervised Datamining -- SVD

Mark Gerstein, Yale University gersteinlab.org/courses/452

(Last edit in spring '22, pack 22m9c, essentially the same as M9c from '21.)

Unsupervised Mining

SVD

Puts together slides prepared by Brandon Xia with images from Alter et al. papers

SVD for microarray data (Alter et al, PNAS 2000)

$\mathbf{A} = USV^T$

- A is any rectangular matrix (m ≥ n)
- Row space: vector subspace generated by the row vectors of A
- Column space: vector subspace generated by the column vectors of A
 - The dimension of the row & column
 space is the rank of the matrix A: r (≤ n)
- A is a linear transformation that maps vector x in row space into vector Ax in column space

$A = USV^T$

- U is an "orthogonal" matrix (m ≥ n)
- Column vectors of U form an orthonormal basis for the column space of A: U^TU=I

$$U = \begin{pmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \\ | & | & | \end{pmatrix}$$

- u_1 , ..., u_n in U are eigenvectors of AA^T
 - $-AA^T = USV^T VSU^T = US^2 U^T$
 - "Left singular vectors"

Eigenarrays

$$A = USV^T$$

- V is an orthogonal matrix (n by n)
- Column vectors of V form an orthonormal basis for the row space of

A:
$$V^TV = VV^T = I$$

$$egin{aligned} oldsymbol{V} &= egin{pmatrix} | & | & | & | & | & | \\ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_n & | & | & | \end{pmatrix} \end{aligned}$$

- $-A^{T}A = VSU^{T}USV^{T} = VS^{2}V^{T}$
- "Right singular vectors"

$A = USV^T$

- S is a diagonal matrix (n by n) of nonnegative singular values
- Typically sorted from largest to smallest
- Singular values are the non-negative square root of corresponding eigenvalues of $A^T\!A$ and AA^T

Eigengenes

AV = US

- Means each $Av_i = s_i u_i$
- Remember A is a linear map from row space to column space
- Here, A maps an orthonormal basis $\{v_i\}$ in row space into an orthonormal basis $\{u_i\}$ in column space
- Each component of u_i is the projection of a row of the data matrix A onto the vector v_i

SVD as sum of rank-1 matrices

- $A = USV^T$
- $A = s_1 u_1 v_1^T + s_2 u_2 v_2^T + ... + s_n u_n v_n^T$
- an outer product (uv^T) giving a matrix rather than the scalar of the inner product

- $s_1 \ge s_2 \ge \dots \ge s_n \ge 0$
- What is the rank-r matrix \hat{A} that best approximates A?
 - Minimize $\sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{A}_{ij} A_{ij})^{2}$

LSQ approx. If r=1, this amounts to a line fit.

- $\hat{A} = s_1 u_1 v_1^T + s_2 u_2 v_2^T + ... + s_r u_r v_r^T$
- Very useful for matrix approximation

Examples of (almost) rank-1 matrices

• Signals?
$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Geometry of SVD in row space

This line segment that goes through origin approximates the original data set

The projected data set approximates the original data set Lectures.GersteinLab.org

Geometry of SVD in row space

- A as a collection of m row vectors (points) in the row space of A
- $s_1 u_1 v_1^T + s_2 u_2 v_2^T$ is the best rank-2 matrix approximation for A
- Geometrically: v₁ and v₂ are the directions of the best approximating rank-2 subspace that goes through origin
- s₁u₁ and s₂u₂ gives coordinates for row vectors in rank-2 subspace
- v_1 and v_2 gives coordinates for row space basis vectors in rank-2 subspace

$$A \mathbf{v_i} = s_i \mathbf{u_i}$$

$$I \mathbf{v_i} = \mathbf{v_i}$$

What about geometry of SVD in column space?

- $A = USV^T$
- $A^T = VSU^T$
- The column space of A becomes the row space of A^T
- The same as before, except that U and V are switched

Unsupervised Mining

Intuition on interpretation of SVD in terms of genes and conditions

Genes sorted by correlation with top 2 eigengenes

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106

Fig. 3. Genes sorted by relative correlation with $|\gamma_1\rangle_N$ and $|\gamma_2\rangle_N$ of normalized elutriation. (a) Normalized elutriation expression of the sorted 5,981 genes in the 14 arrays, showing traveling wave of expression. (b) Eigenarrays expression; the expression of $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$, the eigenarrays corresponding to $|\gamma_1\rangle_N$ and $|\gamma_2\rangle_N$, displays the sorting. (c) Expression levels of $|\alpha_1\rangle_N$ (red) and $|\alpha_2\rangle_N$ (green) fit normalized sine and cosine functions of period $Z\equiv N-1=5$,980 and phase $\theta\approx 2\pi/13$ (blue), respectively.

Normalized elutriation expression in the subspace associated with the cell cycle

Fig. 2. Normalized elutriation expression in the subspace associated with the cell cycle. (a) Array correlation with $|\alpha_1\rangle_N$ along the *y*-axis vs. that with $|\alpha_2\rangle_N$ along the *x*-axis, color-coded according to the classification of the arrays into the five cell cycle stages, M/G₁ (yellow), G₁ (green), S (blue), S/G₂ (red), and G₂/M (orange). The dashed unit and half-unit circles outline 100% and 25% of overall normalized array expression in the $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ subspace. (b) Correlation of each gene with $|\gamma_1\rangle_N$ vs. that with $|\gamma_2\rangle_N$, for 784 cell cycle regulated genes, color-coded according to the classification by Spellman *et al.* (3).

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106