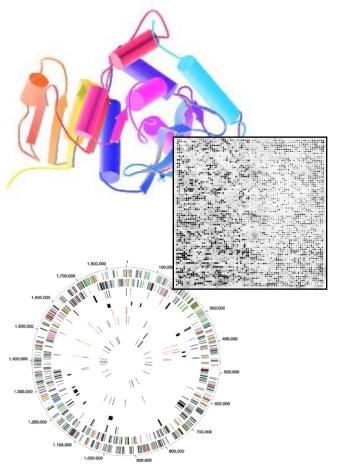
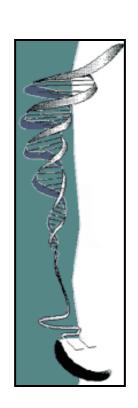
Biomedical Data Science:

Analysis of Network Topology -Network Generation Models





Mark Gerstein, Yale University gersteinlab.org/courses/452

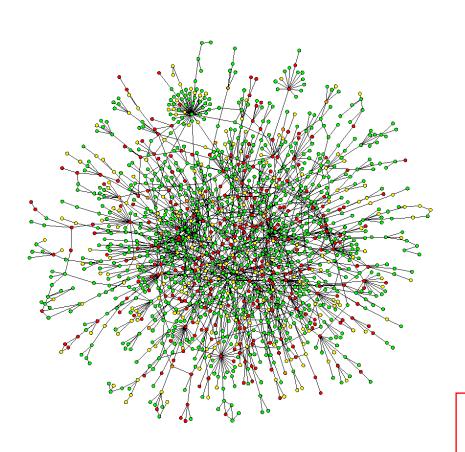
(Last edit in spring '22; pack 22m10c, very similar to M10c from '21)

Network Topology

Simple Mathematical Models for Interpreting Complex Topology: ER Model & Small World Networks

(c) M Gerstein, gerstein.info/talks

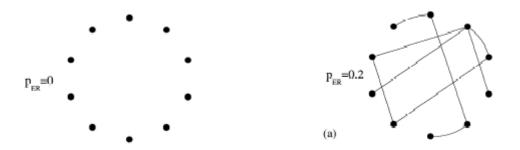
Models for networks of complex topology



- Erdos-Renyi (1960)
- Watts-Strogatz (1998)
- Barabasi-Albert (1999)

A Barabási & R Albert
"Emergence of scaling in random networks,"
Science 286, 509-512 (1999).

The Erdős-Rényi [ER] model (1960)



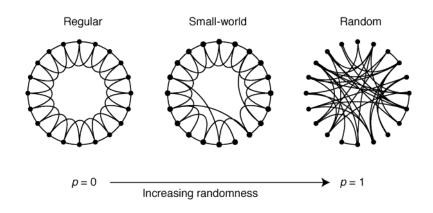
- Start with N vertices and no edges
- Connect each pair of vertices with probability P_{ER}

Important result: many properties in these graphs appear quite suddenly, at a threshold value of $P_{ER}(N)$

- -If P_{ER}~c/N with c<1, then almost all vertices belong to isolated trees
- -Cycles of all orders appear at P_{ER} ~ 1/N

(c) M Gerstein, gerstein.info/talks

The Watts-Strogatz [WS] model (1998)



- Start with a regular network with N vertices
- Rewire each edge with probability p

For p=0 (Regular Networks):

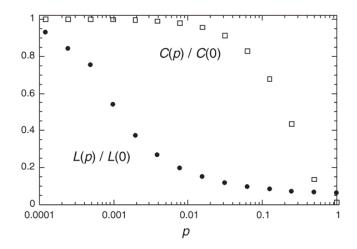
- •high clustering coefficient
- high characteristic path length

For p=1 (Random Networks):

- low clustering coefficient
- •low characteristic path length

QUESTION: What happens for intermediate values of p?

1) There is a broad interval of p for which L is small but C remains large

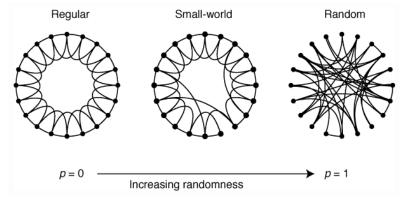


2) Small world networks are common:

Table 1 Empirical examples of small-world networks				
	Lactual	$L_{ m random}$	$C_{ m actual}$	$C_{\sf random}$
Film actors Power grid C. elegans	3.65 18.7 2.65	2.99 12.4 2.25	0.79 0.080 0.28	0.00027 0.005 0.05

Small world network

- A simple connected graph G exhibiting two properties:
 - Large Clustering Coefficient: Each vertex of G is linked to a relatively wellconnected set of neighboring vertices, resulting in a large value for the clustering coefficient C(G);
 - Small Characteristic Path Length: The presence of short-cut connections between some vertices results in a small characteristic path length L(G).



local connectivity and global reach

Network Topology

Simple Mathematical Models for Interpreting Complex Topology: BA Model & Scale Free Networks

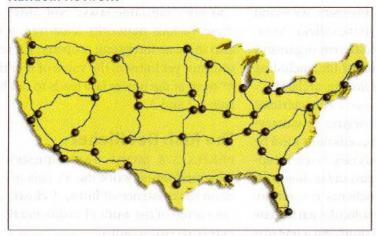
Random v Scale-free Networks

RANDOM NETWORKS, which resemble the U.S. highway system (simplified in left map), consist of nodes with randomly placed connections. In such systems, a plot of the distribution of node linkages will follow a bell-shaped curve (left graph), with most nodes having approximately the same number of links.

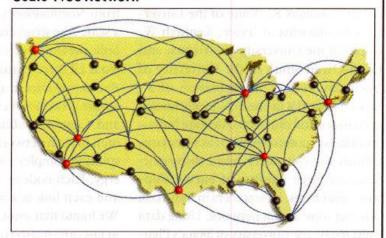
In contrast, scale-free networks, which resemble the U.S. airline system (simplified in right map), contain hubs (red)—

nodes with a very high number of links. In such networks, the distribution of node linkages follows a power law (center graph) in that most nodes have just a few connections and some have a tremendous number of links. In that sense, the system has no "scale." The defining characteristic of such networks is that the distribution of links, if plotted on a double-logarithmic scale (right graph), results in a straight line.

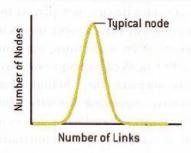
Random Network



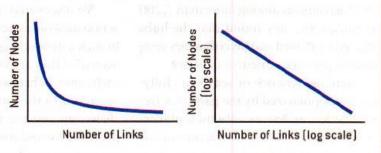
Scale-Free Network



Bell Curve Distribution of Node Linkages



Power Law Distribution of Node Linkages

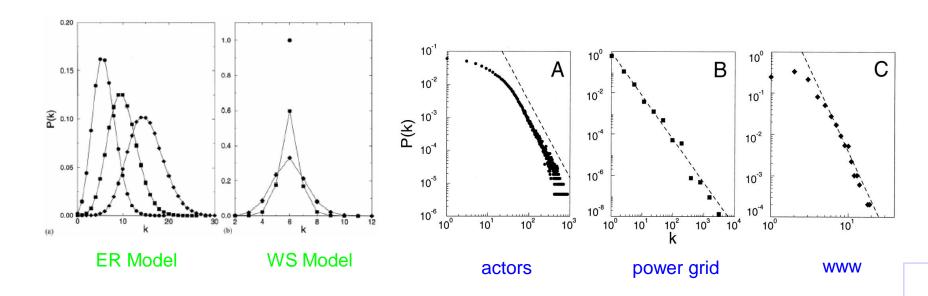


(c) M Gerstein, gerstein.info/talks

(c) M Gerstein, gerstein.info/talks

The Barabási-Albert [BA] model (1999)

Look at the distribution of degrees



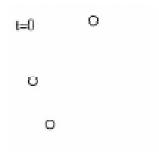
The probability of finding a highly connected node decreases exponentially with k

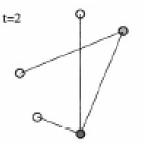
$$P(K) \sim K^{-\gamma}$$

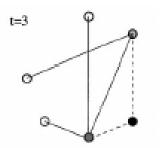
- two problems with the previous models:
 - 1. N does not vary
 - 2. the probability that two vertices are connected is uniform

- GROWTH: starting with a small number of vertices m_0 at every timestep add a new vertex with $m \le m_0$
- PREFERENTIAL ATTACHMENT: the probability Π that a new vertex will be connected to vertex i depends on the connectivity of that vertex:

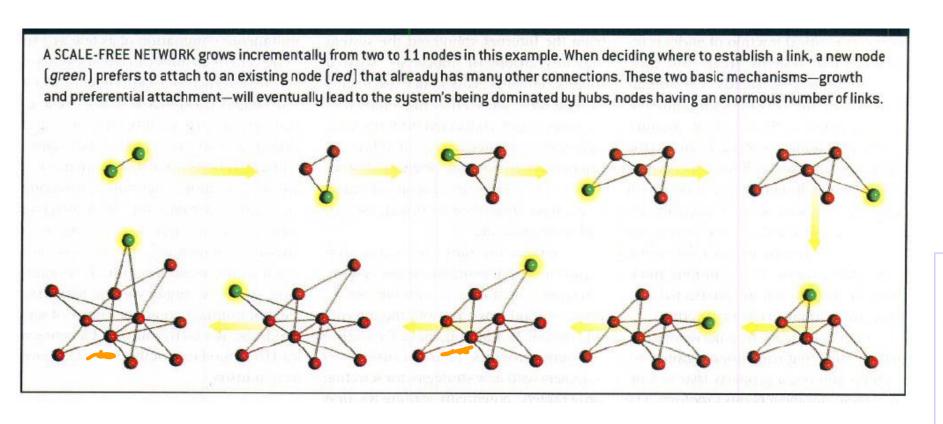
$$\prod(k_i) = \frac{k_i}{\sum_{i} k_j}$$





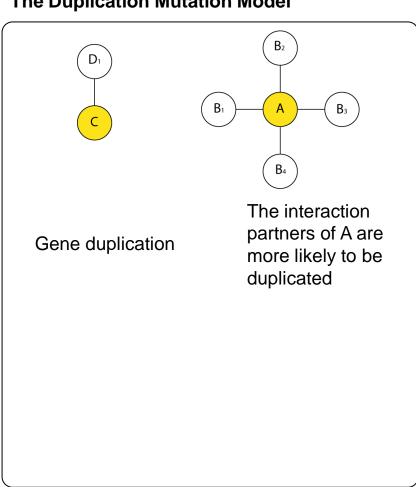


Birth of Scale-Free Network



SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model



Description

 Theoretical work shows that a mechanism. of preferential attachment leads to a scalefree topology

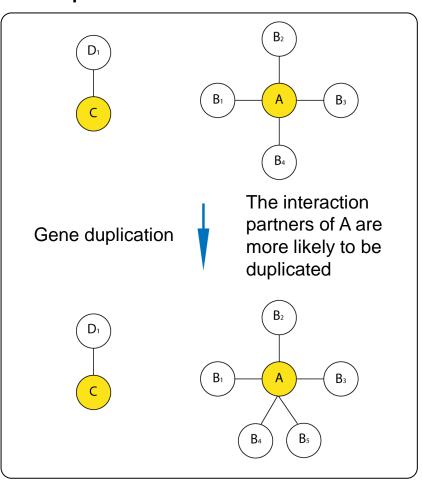
("The rich get richer")

• In interaction network, gene duplication followed by mutation of the duplicated gene is generally thought to lead to preferential attachment

 Simple reasoning: The partners of a hub are more likely to be duplicated than the partners of a non-hub

SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model



Description

 Theoretical work shows that a mechanism of preferential attachment leads to a scalefree topology

("The rich get richer")

 In interaction network, gene duplication followed by mutation of the duplicated gene is generally thought to lead to preferential attachment

 Simple reasoning: The partners of a hub are more likely to be duplicated than the partners of a non-hub