Biomedical Data Science:

Analysis of Network Topology -Network Quantities

Mark Gerstein, Yale University
 gersteinlab.org/courses/452
(Last edit in spring '22; pack 22m10b, very similar to M10b from '21.)

Network Topology

What are the Main Quantities that Can be Calculated from Networks?

- Degree of a node: the number of edges incident on the node

Degree of node $\mathrm{i}=5$

Network parameters

Number of incoming and outgoing connections

Incoming connections $=2.2$
 \rightarrow each gene is regulated by ~ 2 TFs
 In-degree

Outgoing connections $=20.2$
 \rightarrow each TF regulates ~ 20 genes

Connectivity
Out-degree

Clustering coefficient

- Clustering Coefficient:
- Ratio of existing links to maximum number of links for neighbouring nodes
- Example:
- For A:
-3 neighbours
-2 existing link
-3 possible links
- Clustering coefficient
- $C_{A}=2 / 3$

Example from: http://www.learner.org/courses/mathilluminated/units/11/textbook/04.php

Clustering coefficient

- Average Coefficient:
- Average of clustering coefficients of all nodes n

$$
\overline{\mathrm{C}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}
$$

- Measure of inter-connectedness of the network
- Global property
- Example:
- Clustering coefficient:
$\mathrm{C}_{\mathrm{A}}=2 / 3 \quad \mathrm{C}_{\mathrm{B}}=2 / 3$
$\mathrm{C}_{\mathrm{C}}=1 / 3 \quad \mathrm{C}_{\mathrm{D}}=1 / 3$
- Average coefficient =
$1 / 4(2 / 3+2 / 3+1 / 3+1 / 3)=0.5$

Path length

- Number of edges along a path
- Path length $=3$
- Meaning:
- Number of intermediate TFs to reach final target
- Indication of how immediate a response is

Path length

- Shortest path length:
. $L_{(i, j)}$ is the minimum number of edges that must be traversed to travel from a vertex i to another vertex j of a graph G

$$
L_{(i, j)}=2
$$

- Characteristic path length (Average path length)
- The characteristic path length L of a graph is the average of the $L_{(i, j)}$ for every possible pair (i,j)

$$
L=\frac{1}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}, \mathrm{j}} L_{(i, j)}
$$

- Networks with small values of L are said to have the "small world property"

Network motifs

Regulatory modules within the network

FFL = Feed-forward loops

Cliques

- Fully connected sub-components
- Related measures k-cores: For all vertices in a graph G have degree at least k

Problem: High-throughput experiments are prone to missing interactions

One solution—defective cliques

- If proteins P and Q interact with a clique K of proteins which all interact with each other, then P and Q are more likely to interact with each other
- P, Q, and K form a defective clique

Predicting protein interactions by completing defective cliques

