Biomedical Data Science:

Analysis of Network Topology -Network Quantities

Mark Gerstein, Yale University gersteinlab.org/courses/452

(Last edit in spring '22; pack 22m10b, very similar to M10b from '21.)

Network Topology

What are the Main Quantities that Can be Calculated from Networks?

Degree of a node: the number of edges incident on the node

Degree of node i = 5

(c) M Gerstein, gerstein.info/talks

Network parameters

Number of incoming and outgoing connections

Connectivity

Incoming connections = 2.2

→each gene is regulated by ~2 TFs

In-degree

Outgoing connections = 20.2

→each TF regulates ~20 genes

Out-degree

Clustering coefficient

- Clustering Coefficient:
 - Ratio of existing links to maximum number of links for neighbouring nodes
 - Example:
 - For A:
 - •3 neighbours
 - •2 existing link
 - •3 possible links
 - Clustering coefficient
 - $C_A = 2/3$

Example from: http://www.learner.org/courses/mathilluminated/units/11/textbook/04.php

Clustering coefficient

Average Coefficient:

Average of clustering coefficients of all nodes n

$$\overline{C} = \frac{1}{n} \sum_{i=1}^{n} C_i$$

- Measure of inter-connectedness of the network
- Global property

Example:

– Clustering coefficient:

$$C_A = 2/3$$
 $C_B = 2/3$

$$C_C = 1/3$$
 $C_D = 1/3$

– Average coefficient =

$$1/4(2/3+2/3+1/3+1/3) = 0.5$$

Path length

- Number of edges along a path
- Path length = 3
- Meaning:
 - Number of intermediate TFs to reach final target
 - Indication of how immediate a response is

Path length

- Shortest path length:
 - $L_{(i,j)}$ is the minimum number of edges that must be traversed to travel from a vertex i to another vertex j of a graph G

$$L_{(i,j)} = 2$$

Graph Theory Terminology (Batten, pp. 92-105)

- Characteristic path length (Average path length)
 - The characteristic path length L of a graph is the average of the $L_{(i,j)}$ for every possible pair (i,j) $L = \frac{1}{n(n-1)} \sum_{i,j} L_{(i,j)}$
 - Networks with small values of L are said to have the "small world property"

Network motifs

Regulatory modules within the network

FFL = Feed-forward loops

Network Motifs

7 Motifs Over-represented

FFL involving miRNA & 2 TFs

Cliques

- Fully connected sub-components
- Related measures
 k-cores: For all vertices in a graph G
 have degree at least k

[Hogue et al, BMC BIOINFORMATICS, 2003]

Problem: High-throughput experiments are prone to missing interactions

One solution—defective cliques

- If proteins P and Q interact with a clique K of proteins which all interact with each other, then P and Q are more likely to interact with each other
- P, Q, and K form a defective clique

Predicting protein interactions by completing defective cliques