Biomedical Data Science: Supervised Datamining – Decision Trees

Mark Gerstein, Yale University GersteinLab.org/courses/452 (Last edit in spring '22. 22m8a is essentially identical to M8a, with small move of slide 4.) **Supervised Mining:**

Overview

The World of Machine Learning

Distinctions in Supervised Learning

- Regression vs Classification
 - Regression: labels are quantitative
 - Classification: labels are categorical
- Regularized vs Un-regularized
 - Regularized: penalize model complexity to avoid over-fitting
 - Un-regularized: no penalty on model complexity
- Parametric vs Non-parametric
 - Parametric: an explicit parametric model is assumed
 - Non-parametric: otherwise
- Ensemble vs Non-ensemble
 - Ensemble: combines multiple models
 - Non-ensemble: a single model

Structure of Genomic Features Matrix

Arrange data in a tabulated form, each row representing an example and each column representing a feature, including the dependent experimental quantity to be predicted.

	predictor1	Predictor2	predictor3	predictor4	response
G1	A(1,1)	A(1,2)	A(1,3)	A(1,4)	Class A
G2	A(2,1)	A(2,2)	A(2,3)	A(2,4)	Class A
G3	A(3,1)	A(3,2)	A(3,3)	A(3,4)	Class B

Represent predictors in abstract high dimensional space

9

"Label" Certain Points

9

"Cluster" predictors (Unsupervised)

Use Clusters to predict Response (Unsupervised, guilt-by-association)

Find a Division to Separate Tagged Points

4

Extrapolate to Untagged Points

Probabilistic Predictions of Class

Find a Division to Separate Tagged Points

Supervised Mining:

Decision Trees

Decision Trees

- Classify data by asking questions that divide data in subgroups
- Keep asking questions until subgroups become homogenous
- Use **tree** of questions to make predictions

• Example: Is a picture taken inside or outside?

Criminisi, Shotton, and Konukoglu Microsoft Technical Report 2011

What makes a good rule?

• Want resulting groups to be as homogenous as possible

Quantifying the value of rules

- Decrease in inhomogeneity
 - Most popular metric: Information theoretic entropy

$$S = -\sum_{i=1}^{m} p_i \log p_i$$

- Use frequency of classifier characteristic within group as probability
- Minimize entropy to achieve homogenous group

Algorithm

- For each characteristic:
 - Split into subgroups based on each possible value of characteristic
- Choose rule from characteristic that maximizes decrease in inhomogeneity
- For each subgroup:
 - if (inhomogeneity < threshold):</p>
 - Stop
 - else:
 - Restart rule search (recursion)

Retrospective Decision Trees

[Bertone et al. NAR ('01)]

Has a hydrophobic stretch? (Y/N)

[Bertone et al. NAR ('01)]

Extensions of Decision Trees

- Decision Trees method is very sensitive to noise in data
- Random forests is an ensemble of decision trees and is much more effective.