Biomed. Data Sci:

1000G+PCAWG Summary

Mark Gerstein, Yale University

gersteinlab.org/courses/452
(Last edit in spring '22, final.
This is 22m6b which has new slide 8 relative to last year's M6b.)

1000G SV (Pilot, Phase I \& III)

- Many different SV callers compared \& used
- including SRiC \& CNVnator but also VariationHunter, Cortex, NovelSeq, PEMer, BreakDancer, Mosaik, Pindel, GenomeSTRiP, mrFast....
- Merging
- Genotyping
- Breakpoint assembly
- Mechanism Classification

Summary Stats of 1000GP SV Phase3

- 68,818 SVs
- 2,504 unrelated individuals
- 26 populations
- 37,250 SVs with resolved breakpoints
[2] 1000GP Phase3 SV paper. Submid ed to Nature, 2015.

Human Genetic Variation

A Cancer Genome

A Typical Genome

| Origin of Variants | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Coding | Non-
 coding |
| Germ-
 line | 22 K | $4.1-5 \mathrm{M}$ |
| Somatic | ~ 50 | 5 K |

* Variants with allele frequency $<0.5 \%$ are considered as rare variants in 1000 genomes project.

Association of Variants with Diseases

Phase 3: Median Autosomal Variant Sites Per Genome

Samples Mean Coverage	$\begin{gathered} \hline \text { AFR } \\ 661 \\ 8.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { AMR } \\ 347 \\ 7.6 \end{gathered}$		$\begin{aligned} & \hline \text { EAS } \\ & 504 \\ & 7.7 \\ & \hline \end{aligned}$		$\begin{gathered} \hline \text { EUR } \\ 503 \\ 7.4 \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { SAS } \\ 489 \\ 8.0 \\ \hline \end{gathered}$	
	Var. Sites	Singletons								
SNPs	4.31M	14.5k	3.64M	12.0k	3.55 M	14.8k	3.53 M	11.4 k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large Deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (LINE1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
NonSynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72 M	6.12k	1.68 M	7.39k	1.68 M	5.68k	1.72 M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31 k
TFBS	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

Different Approaches Work Differently on Different Events

PCAWG
 summary

PCAWG : most comprehensive resource for cancer whole genome analysis

Adapted from Campbell et. al., bioRxiv ('17).
Now published as Nature 578: 82-93 (2020)

Project Goals:

- To understand role of non-coding regions of cancer genomes in disease progression.
- Union of TCGA-ICGC efforts
- Jointly analyzing ~2800 whole genome tumor/normal pairs
$\gg 580$ researchers
>16 thematic working groups
$>\sim 30 \mathrm{M}$ total somatic SNVs

PCAWG

PanCancer Analysis OFWHOLE GENOMES

PCAWG Summary Variant Totals by Cancer

