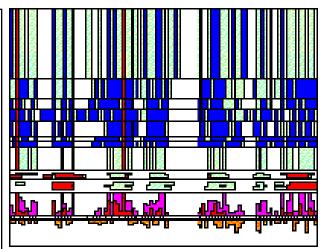

Biomed. Data Sci. Multiple Sequences

(Last edit in spring '22, 22m4. Added slides on agglomerative clustering & HMMs, compared to last year's M4.)

Multiple Sequence Alignment Topics

- Multiple Sequence Alignment
- Motifs
 - Fast identification methods
- Profile Patterns
 - Refinement via EM
 - Gibbs Sampling
- HMMs
- Applications
 - Protein Domain databases
 - Regression vs expression

- One of the most essential tools in molecular biology

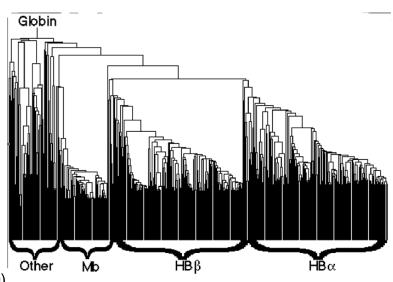

It is widely used in:

- Phylogenetic analysis
- Prediction of protein secondary/tertiary structure
- Finding diagnostic patterns to characterize protein families
- Detecting new homologies between new genes and established sequence families

<u>Multiple Sequence</u> <u>Alignments</u>

- Practically useful methods only since 1987
- Before 1987 they were constructed by hand
- The basic problem: no dynamic programming approach can be used
- First useful approach by D. Sankoff (1987) based on phylogenetics

AGRI_CHICK	154	OVCPAS	SGVa	.ESIVCGS	DG <u>K</u> DYR	SECI	DINKHA	DK	QENVFKKFDCA	201
AGRI RAT		CLCPTT								
FSA HUMAN		OVCAPD								
FSA PIG		OVCAPD								
FSA RAT		OVCAPD								
FSA SHEEP		VCAPD								
IACI BOVIN		KVYTEAC								
IAC2 BOVIN	7	AEFKDPKVY	TRE.	. SNPHCCS	NGETYG	NKC/	AF	KAVM.KS	GGKINLKHRCK	57
IACA PIG	7	ONVYRSHLFF	TRQ.	. MDPICGI	NGKSYA	NPC:	IF	SEKG. LR	NQKFDFGHWGH	57
IACS PIG	12	ODVYRSHLFFC	TRE.	.MDPICGI	NGKSYA	NPC:	IF	SEKL.GR	NEKFDFGHWGH	62
IAC MACFA		ARYQLPG								
IOV7 CHICK		SPYLQVVRDGNtMVA								
IOVO ABUPI		SDHPŘPA								
IOVO ALECH	6	SEYPKPA	TLE.	.YRPLCGS	DSKTYG	NKCI	NF	NAVV.ES	NGTLTLSHFCK	54
IPSG VULVU	68	TEYSDMC	TMD.	.YRPLCGS	DGKNYS	NKC:	IFC	NAVV.RS	RGTIFLAKHCE	115
IPST ANGAN		GEMSAMHA								
IPST_BOVIN	9	TNEVNG	PRI.	. YNPVCGI	DGVTYS	NECI	LL	MENK.ER	QTPVLIQKSCP	56
IPST PIG	9	TSEVSG	PKI.	. YNPVCGI	DGITYS	NEC	VL	SENK.KR	QTPVLIQKSCP	56
IPST_SHEEP	9	TNEVNG	P RI.	. YNPVCGI	dgvtya	NECI	LL	MENK.ER	QTPVLIQKSCP	56
OATP HUMAN		ONVDCN								
OATP RAT		ONTRCS								
PE60_PIG	37	CEHMTESPD	SRI.	. YDPVCGI	DGVTYE	SEC	К∐С	LARI. <u>E</u> N	KQD I QIVKD G E	86
PGT_RAT	444	RRDCS	PDSf	. FHPVCGD	NGVEYV	SPO	HAG	SS	TNTSSEASKEP:	488
PSG1_MOUSE	33	CHDAVAGC	PRI.	. YDPVCGI	DGITYA	NBC/	VL	FENR.KR	IEPVLIRKGGP	80
QR1_COTJA		GICQDPAAC								
SC1_RAT		OVCQDPETC								
SPRC_BOVIN		OVCQDP.TSC	Pap.iGE.	. FEKVOSN	DNKTED	SSCI	HFFATK	TLEGtKK	GHKLHLDYIGP	149
SPRC_CAEEL	74	GECĨSKC								
SPRC_MOUSE	92	OVCQDP.TSC	Pap.iGE.	. FEKVOSN	DNKTED	SSCI	HFFATK	TLEGtKK	GHKLHLDYIGP	148
SPRC_XENLA	90	VCQDPST	Pts.vGE.	.FEKICGI	DNKTYD	SSGI	HFFATK	TLEGtKK	GHKLHLDYIGP	146



(LEFT, adapted from Sonhammer et al. (1997). "Pfam," Proteins 28:405-20. ABOVE, G Barton AMAS web page)

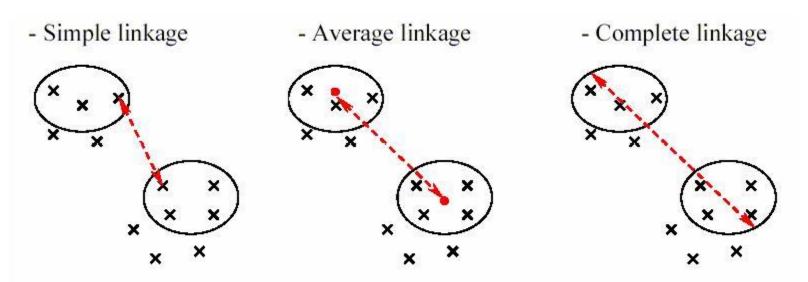
Progressive Multiple Alignments

(quick, simplified overview)

- Most multiple alignments based on this approach
- Initial guess for a phylogenetic tree based on pairwise alignments
- Built progressively starting with most closely related sequences
- Follows branching order in tree
- Sufficiently fast
- Sensitive
- Algorithmically heuristic, no mathematical property associated with the alignment
- Biologically sound, it is common to derive alignments which are impossible to improve by eye

(adapted from Sonhammer et al. (1997). "Pfam," Proteins 28:405-20)

<u>Agglomerative</u> <u>Clustering</u>

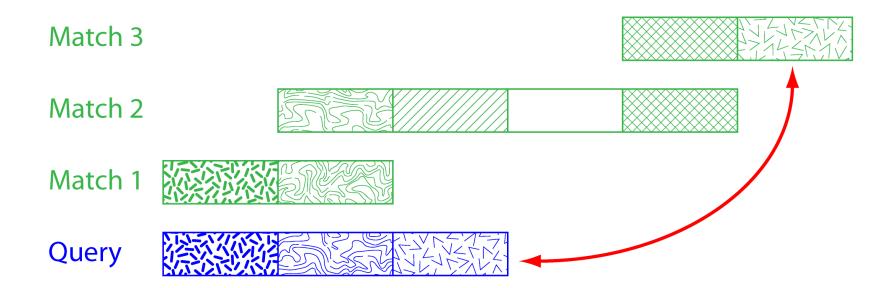

- Ex. From Wikipedia
- Suppose we have merged the two closest elements b and c, we now have the following clusters {a}, {b, c}, {d}, {e} and {f}, and want to merge them further. To do that, we need to take the distance between {a} and {b c}, and therefore define the distance between two clusters.

http://commons.wikimedia.org/wiki/File:Hierarchical_clustering_diagram.png 0

Clustering approaches for multiple sequence alignment

- Clustal uses average linkage clustering
 - ◊ also called UPGMA

Unweighted Pair Group Method with Arithmetic mean



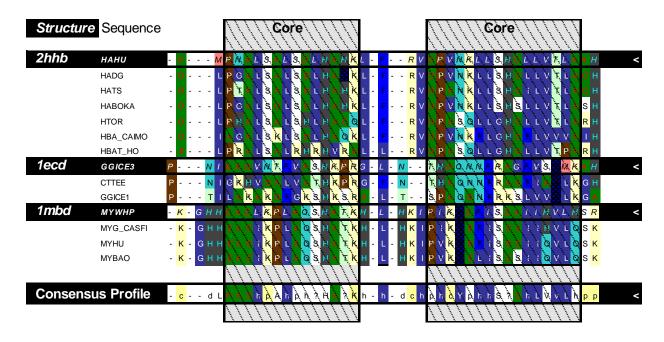
http://compbio.pbworks.com/f/linkages.JPG

Problems with Progressive Alignments

- Local Minimum Problem
 - Parameter Choice Problem
- 1. Local Minimum Problem
- It stems from greedy nature of alignment (mistakes made early in alignment cannot be corrected later)
- A better tree gives a better alignment (UPGMA neighbour-joining tree method)
- 2. Parameter Choice Problem
- It stems from using just one set of parameters (and hoping that they will do for all)

Domain Problem in Multiple Alignment

Fuse multiple alignment into:


- **Motif**: a short signature pattern identified in the conserved region of the multiple alignment

- **Profile**: frequency of each amino acid at each position is estimated

- **HMM**: Hidden Markov Model, a generalized profile in rigorous mathematical terms

Profiles Motifs HMMs

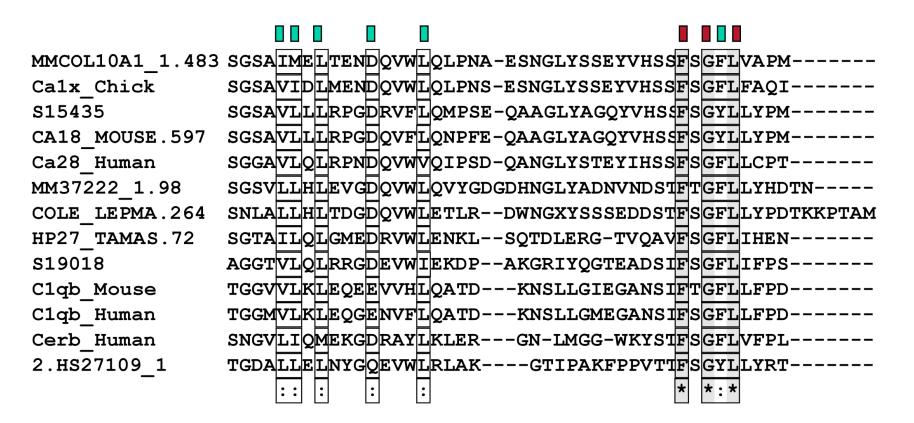
Can get more sensitive searches with these multiple alignment representations (Run the profile against the DB.)

Multiple Alignment

MOTIFS

2 different applications for motif analysis

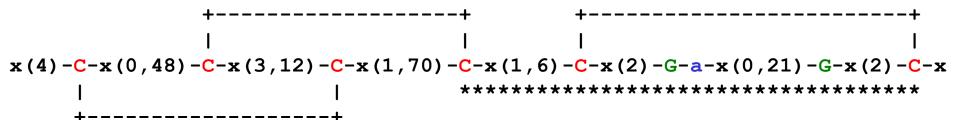
- Given a collection of binding sites (or protein sequences with binding motifs), develop a representation of those sites that can be used to search new sites and reliably predict where additional binding sites occur.
- Given a set of sequences known to contain binding sites for a common factor, but not knowing where the sites are, discover the location of the sites in each sequence and a representation of the protein.


- several proteins are grouped together by similarity

<u>Motifs</u>

- they share a conserved motif

searches


- motif is stringent enough to retrieve the family members from the complete protein database
- PROSITE: a collection of motifs (1135 different motifs)

Prosite Pattern -- EGF like pattern

A sequence of about thirty to forty amino-acid residues long found in the sequence of epidermal growth factor (EGF) has been shown [1 to 6] to be present, in a more or less conserved form, in a large number of other, mostly animal proteins. The proteins currently known to contain one or more copies of an EGF-like pattern are listed below.

- Bone morphogenic protein 1 (BMP-1), a protein which induces cartilage and bone formation.
- Caenorhabditis elegans developmental proteins lin-12 (13 copies) and glp-1 (10 copies).
- Calcium-dependent serine proteinase (CASP) which degrades the extracellular matrix proteins type
- Cell surface antigen 114/A10 (3 copies).
- Cell surface glycoprotein complex transmembrane subunit .
- Coagulation associated proteins C, Z (2 copies) and S (4 copies).
- Coagulation factors VII, IX, X and XII (2 copies).
- Complement C1r/C1s components (1 copy).
- Complement-activating component of Ra-reactive factor (RARF) (1 copy).
- Complement components C6, C7, C8 alpha and beta chains, and C9 (1 copy).
- Epidermal growth factor precursor (7-9 copies).

- 'C': conserved cysteine involved in a disulfide bond.
- 'G': often conserved glycine
- 'a': often conserved aromatic amino acid
- '*': position of both patterns.
- 'x': any residue

```
-Consensus pattern: C-x-C-x(5)-G-x(2)-C
```

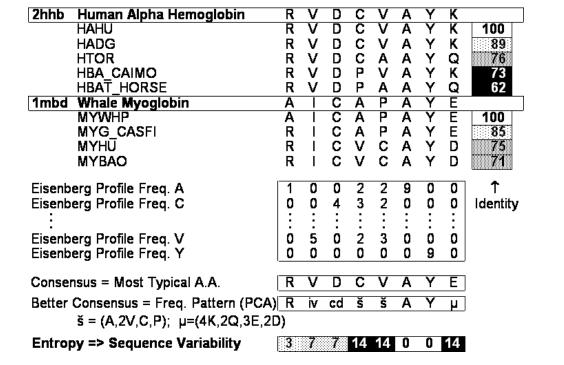
[The 3 C's are involved in disulfide bonds]

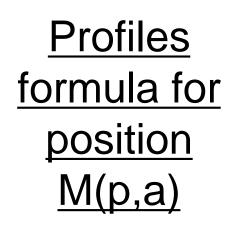
```
http://www.expasy.ch/sprot/prosite.html
```

Multiple Alignment

PROFILES

	2hhb	Human Alpha Hemo	alohin	R	V	D	С	V	Α	V	Κ	
	2000		giobin		-			-				
		HAHU		R	V	D	С	V	Α	Y	Κ	100
Profiles		HADG		R	V	D	С	V	Α	Y	ĸ	89
		HTOR		R	V D	D	С	Α	Α	Y	Q	76
		HBA CAIMO		R	V	D	Р	V	Α	Y	κ	73
		HBAT_HORSE		R	V	D	Р	Α	Α	Y	Q	62
	1mbd	Whale Myoglobin		Α		С	Α	Р	Α	Υ	Е	
		MYWHP		Α		С	Α	Р	Α	Y	Е	100
		MYG CASFI		R	Ι	С	Α	Р	Α	Y	Е	85
		МҮНŪ		R		С	V	С	Α	Y	D	75
		MYBAO		R	Ι	С	V	С	Α	Y	D	71
	Eisenb	erg Profile Freq. A	Ì	1	0	0	2	2	9	0	0	↑
		erg Profile Freq. C		ò	ŏ	4	3	2	ŏ	õ	ŏ	Identity
	-	org i tomo i toq. o		÷	÷		÷	•	÷	÷	. ĭ	laoning
				:	:	:	:	:	:	:	:	
	Eisenb	erg Profile Freq. V		0	5	0	2	3	0	0	0	
		erg Profile Freq. Y		0	0	0	0	0	0	9	0	
			•									
	Conse	nsus = Most Typical A	. A . [R	V	D	С	V	Α	Y	E	
	Better	Consensus = Freq. Pa	attern (PCA)	R	iv	cd	Š	Š	Α	Y	μ	
		š = (A,2V,C,P);									_	
	Entrop	y => Sequence Varia	ability [3	7	7	14	14	0	0	14	

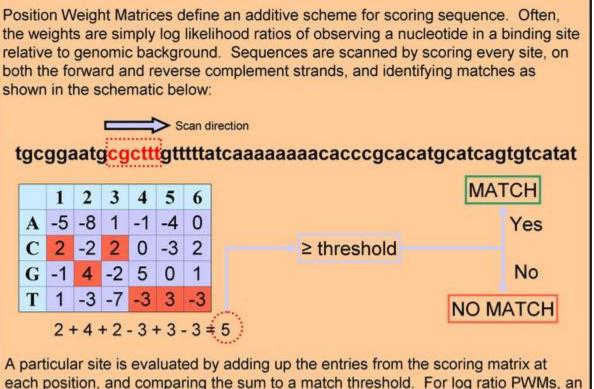

Profile : a position-specific scoring matrix composed of 21 columns and N rows (N=length of sequences in multiple alignment)


What happens with gaps?

EGF Profile Generated for SEARCHWISE

Cons		с	D	Е	F	G	н	I	к	L	м	N	P	Q	R	S	т	v	W	Y	Gap
v	-1	-2	-9	-5	-13	-18	-2	-5	-2	-7	-4	-3	-5	-1	-3	0	0	-1	-24	-10	100
D	0	-14	-1	-1	-16	-10	0	-12	0	-13	-8	1	-3	0	-2	0	0	-8	-26	-9	100
v	0	-13	-9	-7	-15	-10	-6	-5	-5	-7	-5	-6	-4	-4	-6	-1	0	-1	-27	-14	100
D	0	-20	18	11	-34	0	4	-26	7	-27	-20	15	0	7	4	6	2	-19	-38	-21	100
P	3	-18	1	3	-26	-9	-5	-14	-1	-14	-12	-1	12	1	-4	2	0	-9	-37	-22	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
A	2	-7	-2	-2	-21	-5	-4	-12	-2	-13	-9	0	-1	0	-3	2	1	-7	-30	-17	100
S	2	-12	3	2	-25	0	0	-18	0	-18	-13	4	3	1	-1	7	4	-12	-30	-16	25
n	-1	-15	4	4	-19	-7	3	-16	2	-16	-10	7	-6	3	0	2	0	-11	-23	-10	25
р	0	-18	-7	-6	-17	-11	0	-17	-5	-15	-14	-5	28	-2	-5	0	-1	-13	-26	-9	25
c -	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	25
L	-5	-14	-17	-9	0	-25	-5	4	-5	8	8	-12	-14	-1	-5	-7	-5	2	-15	-5	100
N	-4 1	-16 -16	12 7	5 1	-20 -35	0 29	24 0	-24 -31	5 -1	-25 -31	-18 -23	25 12	-10 -10	6 0	2 -1	4 4	1 -3	-19 -23	-26 -32	-2 -23	100 50
g G	6	-10	0	-7	-35	29 59	-13	-41	-10	-41	-23	3	-14	-9	-1	4 5	-3 -9	-23	-32 -39	-23	100
Т	3	-10	0	2	-21	-12	-13	-41	-10	-11	-52	1	-14	-9	-9 -1	6	- 9 11	-29	-33	-18	100
c	5	115	-32	-30	-21	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-10	100
I	-6	-13	-19	-11	-0	-28	-15	-11	-20	-15	8	-12	-17	-4	-22	-9	-4	6	-12	-1	100
d	-4	-19	-19	6	-15	-13	5	-17		-16	-12	-12	-9	2	-2	-1	-1	-13	-24	-5	31
i	0	-6	-8	-6	-4	-11	-5	3	-5	1	2	-5	-8	-4	-6	-2	0	4	-14	-6	31
g	1	-13	0	0	-20	-3	-3	-12	-3	-13	-8	0	-7	0	-5	2	0	-7	-29	-16	31
y L	-5	-11	-20	-14	0	-23	-9	9	-11	8	7	-14	-17	-9	-14	-8	-4	, 7	-17	-5	100
E	0	-20	14	10	-33	5	0	-25	2	-26	-19	11	-9	4	0	3	0	-19	-34	-22	100
s	3	-13	4	- 3	-28	3	Ő	-18	2	-20	-13		-6	3	1	6	3	-12	-32	-20	100
Ŷ	-14	-9	-25	-22	31	-34	10	-5	-17	0	-1	-14	-13	-13	-15	-14	-13	-7	17	44	100
т	0	-10	-6	-1	-11	-16	-2	-7	-1	-9	-5	-3	-9	0	-1	1	3	-4	-16	-8	100
с	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
R	0	-13	0	2	-19	-11	1	-12	4	-13	-8	3	-8	4	5	1	1	-8	-23	-13	100
с	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
P	0	-14	-8	-4	-15	-17	0	-7	-1	-7	-5	-4	6	0	-2	0	1	-3	-26	-10	100
Р	1	-18	-3	0	-24	-13	-3	-12	1	-13	-10	-2	15	2	0	2	1	-8	-33	-19	100
G	4	-19	3	-4	-48	53	-11	-40	-7	-40	-31	5	-13	-7	-7	4	-7	-29	-39	-36	100
У	-22	-6	-35	-31	55	-43	11	-1	-25	6	4	-21	-34	-20	-21	-22	-20	-7	43	63	50
S	1	-9	-3	-1	-14	-7	0	-10	-2	-12	-7	0	-7	0	-4	4	4	-5	-24	-9	100
G	5	-20	1	-8	-52	66	-14	-45	-11	-44	-35	4	-16	-10	-10	4	-11	-33	-40	-40	100
E	2	-20	10	12	-31	-7	0	-19	6	-20	-15	5	4	7	2	4	2	-13	-38	-22	100
R	-5	-17	0	1	-16	-13	8	-16	9	-16	-11	5	-11	7	15	-1	-1	-13	-18	-6	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
E	0	-26	20	25	-34	-5	6	-25	10	-25	-17	9	-4	16	5	3	0	-18	-38	-23	100
т	-4	-11	-13	-8	-1	-21	2	0	-4	-1	0	-6	-14	-3	-5	-4	0	0	-15	0	100
D	0	-18	5	4	-24	-11	-1	-11	2	-14	-9	1	-6	2	0	0	0	-6	-34	-18	100
I	0	-10	-2	-1	-17	-14	-3	-4	-1	-9	-4	0	-11	0	-4	0	2	-1	-29	-14	100
D	-4	-15	-1	-2	-13	-16	-3	-8	-5	-6	-4	-1	-7	-2	-7	-3	-2	-6	-27	-12	100

Cons. Cys


M(p,a) = chance of finding amino acid a at position p

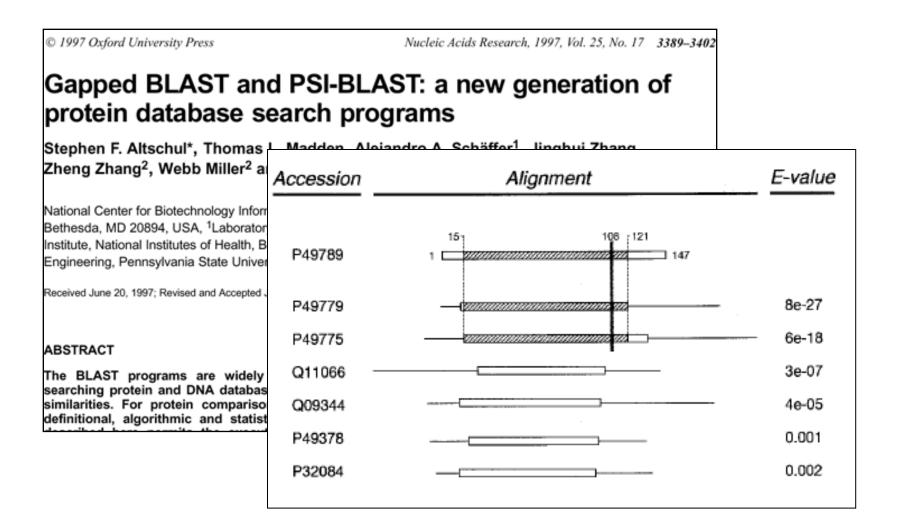
 $M_{simp}(p,a) =$ number of times a occurs at p divided by number of sequences However, what if don't have many sequences in alignment? $M_{simp}(p,a)$ might be baised. Zeros for rare amino acids. Thus:

$$M_{cplx}(p,a) = \Sigma_{b=1 \text{ to } 20} M_{simp}(p,b) \times Y(b,a)$$

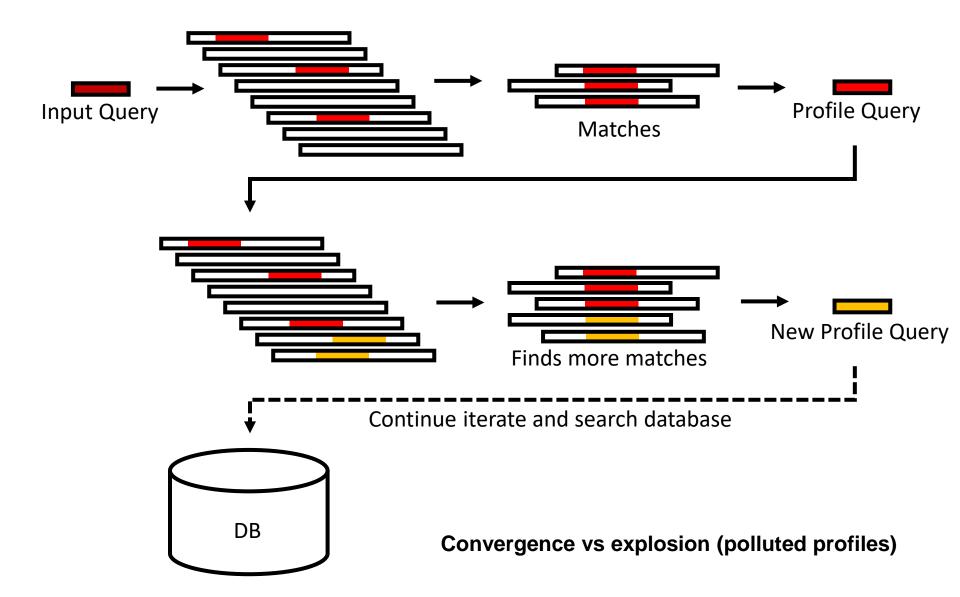
Y(b,a): Dayhoff matrix for *a* and *b* amino acids

$$S(p,a) \sim \Sigma_{a=1 \text{ to } 20} M_{simp}(p,a) \ln M_{simp}(p,a)$$

Scanning for Motifs with PWMs



each position, and comparing the sum to a match threshold. For log ratio PWMs, an empirically chosen threshold of 60% of the maximum positive score has been used by Harbison et al. and is approximately equal to cutoffs determined by the principled cross-validated method presented in MacIsaac et al. More sophisticated algorithms developed specifically for motif scanning are described briefly in Figure 3.



Parameters: overall threshold, inclusion threshold, interations

- Automatically builds profile and then searches with this
- Also PHI-blast

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool)

Low-Complexity Regions

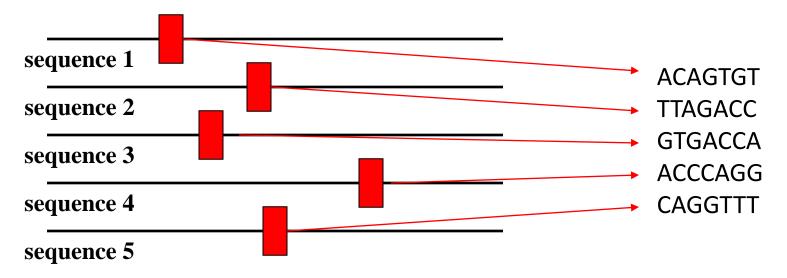
- Low Complexity Regions must be filtered out
 - Different Statistics for matching AAATTTAAATTTAAATTTAAATTTAAATTT than ACSQRPLRVSHRSENCVASNKPQLVKLMTHVKDFCV
 - Automatic Programs Screen These Out (SEG)
 - Identify through computation of sequence entropy in a window of a given size
 - $\mathsf{H} = \Sigma f(\mathsf{a}) \log_2 f(\mathsf{a})$
- Also, Compositional Bias
 - ◊ Matching A-rich query to A-rich DB vs. A-poor DB

Multiple Alignment: Probabilistic Approaches for Determining PWMs

- Expectation Maximization: Search the PWM space randomly
- Gibbs sampling: Search sequence space randomly.

Expectation-Maximization (EM) algorithm

- Used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables.
- EM alternates between performing
 - an expectation (E) step, which computes an expectation of the likelihood by including the latent variables as if they were observed, and
 - a maximization (M) step, which computes the maximum likelihood estimates of the parameters by maximizing the expected likelihood found on the E step.
- The parameters found on the M step are then used to begin another E step, and the process is repeated.
- 1. Guess an initial weight matrix
- 2. Use weight matrix to <u>predict instances</u> in the input sequences
- 3. Use instances to predict a weight matrix
- 4. Repeat 2 [E-step] & 3 [M-step] until satisfied.

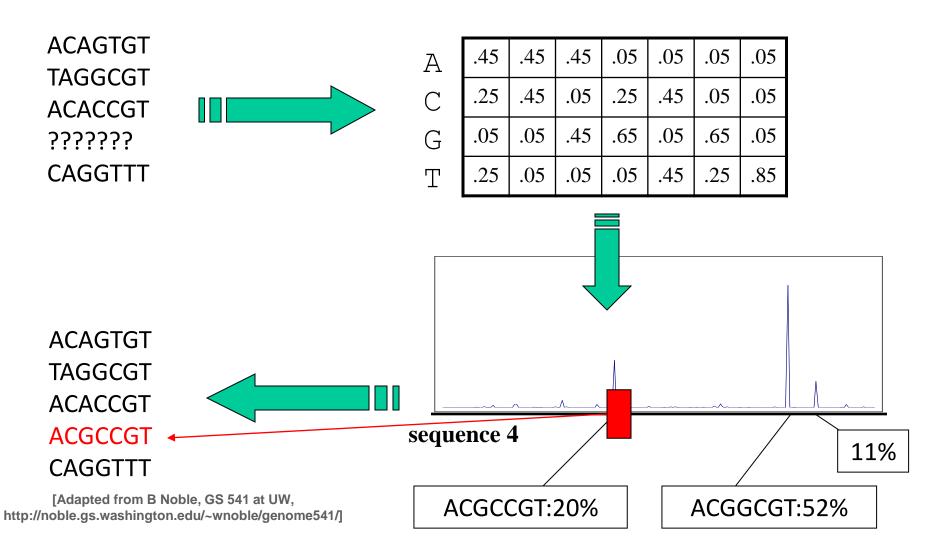

Another good source is Wes Craven's 776 course: https://www.biostat.wisc.edu/~craven/776/lecture9.pdf [Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/] [Also Adapted from C Bruce, CBB752 '09]

Multiple Alignment

Gibbs Sampling

Initialization

• Step 1: Randomly guess an instance s_i from each of *t* input sequences $\{S_1, ..., S_t\}$.


[Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/]

Gibbs sampler

- Steps 2 & 3 (search):
 - Throw away an instance s_i : remaining (t 1) instances define weight matrix.
 - Weight matrix defines instance probability at each position of input string S_i
 - <u>Pick new s_i </u> according to probability distribution (not necessarily always the s_i giving the highest prob.)
- Return highest-scoring motif seen

[Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/]

Sampler step illustration:

Comparison

- Both EM and Gibbs sampling involve iterating over two steps
- Convergence:
 - EM converges when the PSSM stops changing.
 - Gibbs sampling runs until you ask it to stop.
- Solution:
 - EM may not find the motif with the highest score.
 - Gibbs sampling will provably find the motif with the highest score, if you let it run long enough.

[Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/]

Multiple Alignment

HMMs

30 (c) M Gerstein, GersteinLab.org, Yale

Hidden Markov Model:

- a composition of finite number of states,
- each corresponding to a column in a multiple alignment

- each state emits symbols, according to symbol-emission probabilities

Starting from an initial state, a sequence of symbols is generated by moving from state to state until an end state is reached.

0.9

state sequence (hidden):

0.99

		1	1	(1)		2	2	2	2	1	(1)	• • •
transitions:	?	0.99	0.99	0.99	0.99	0.01	0.9	0.9	0.9	0.1	0.99	

0.01

0.1

0.4

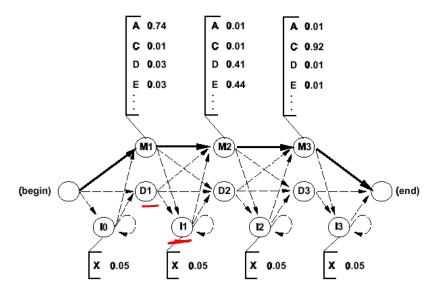
0.1

G 0.1

0.4

2

A


C G 0.05

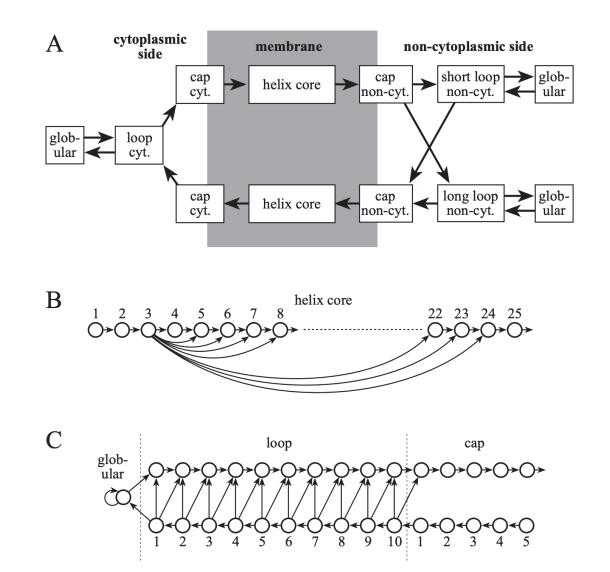
0.4 0.5

0.05

symbol sequence (observable):

• • •	Α	T	C	Α	Α	G	G	C	G	Α	T	
emissions:	0.4	0.4	0.1	0.4	0.4	0.5	0.5	0.4	0.5	0.4	0.4	

HMMs


(Figures from Eddy, Curr. Opin. Struct. Biol.)

Probability of a path through the model Viterbi maximizes for seq Forward sums of all possible paths

Forward Algorithm – finds probability P that a model λ emits a given sequence O by summing over all paths that emit the sequence the probability of that path

Viterbi Algorithm – finds the most probable path through the model for a given sequence (both usually just boil down to simple applications of dynamic programming)

EX of Richness of the HMM Modelling Framework: Predicting Membrane Proteins

