## Biomed. Data Sci. Multiple Sequences



Mark Gerstein, Yale University GersteinLab.org/courses/452
(Last edit in spring ' $22,22 \mathrm{~m} 4$. Added slides on agglomerative clustering \& HMMs, compared to last year's M4.)

## Multiple Sequence Alignment Topics

- Multiple Sequence Alignment
- Motifs
- Fast identification methods
- Profile Patterns
- Refinement via EM
- Gibbs Sampling
- HMMs
- Applications
- Protein Domain databases
- Regression vs expression
- One of the most essential tools in molecular biology


## Multiple Sequence Alignments

 It is widely used in:- Phylogenetic analysis
- Prediction of protein secondary/tertiary structure
- Finding diagnostic patterns to characterize protein families
- Detecting new homologies between new genes and established sequence families


(LEFT, adapted from Sonhammer et al. (1997). "Pfam," Proteins 28:405-20. ABOVE, G Barton AMAS web page)


## Progressive Multiple Alignments

(quick, simplified overview)

- Most multiple alignments based on this approach
- Initial guess for a phylogenetic tree based on pairwise alignments
- Built progressively starting with most closely related sequences
- Follows branching order in tree
- Sufficiently fast
- Sensitive
- Algorithmically heuristic, no mathematical property associated with the alignment
- Biologically sound, it is common to derive alignments which are impossible to improve by eye




## Agglomerative Clustering

- Ex. From Wikipedia
- Suppose we have merged the two closest elements b and $c$, we now have the following clusters $\{a\},\{b, c\}$, $\{d\},\{e\}$ and $\{f\}$, and want to merge them further. To do that, we need to take the distance between $\{a\}$ and $\{b$ c\}, and therefore define the distance between two clusters.


## Clustering approaches for multiple sequence alignment

- Clustal uses average linkage clustering
$\diamond$ also called UPGMA
Unweighted Pair Group Method with Arithmetic mean
- Simple linkage

- Average linkage

- Complete linkage

http://compbio.pbworks.com/f/linkages.JPG


## Problems with Progressive Alignments

- Local Minimum Problem
- Parameter Choice Problem

1. Local Minimum Problem

- It stems from greedy nature of alignment (mistakes made early in alignment cannot be corrected later)
- A better tree gives a better alignment (UPGMA neighbour-joining tree method)

2. Parameter Choice Problem

-     - It stems from using just one set of parameters
(and hoping that they will do for all)


## Domain Problem in Multiple Alignment



Fuse multiple alignment into:

- Motif: a short signature pattern identified in the conserved region of the multiple alignment
- Profile: frequency of each amino acid at each position is estimated
- HMM: Hidden Markov Model, a generalized profile in rigorous mathematical terms

Can get more sensitive searches with these multiple alignment representations (Run the profile against the DB.)


# Multiple Alignment 

## MOTIFS

## 2 different applications for motif analysis

- Given a collection of binding sites (or protein sequences with binding motifs), develop a representation of those sites that can be used to search new sites and reliably predict where additional binding sites occur.
- Given a set of sequences known to contain binding sites for a common factor, but not knowing where the sites are, discover the location of the sites in each sequence and a representation of the protein.
- several proteins are grouped together by similarity


## Motifs

 searches- they share a conserved motif
- motif is stringent enough to retrieve the family members
from the complete protein database
- PROSITE: a collection of motifs (1135 different motifs)



## Prosite Pattern -- EGF like pattern

```
A sequence of about thirty to forty amino-acid residues long found in the sequence
```


 are listed below.

- Bone morphogenic protein 1 (BMP-1), a protein which induces cartilage and bone formation.
- Caenorhabditis elegans developmental proteins lin-12 (13 copies) and glp-1 (10 copies)
- Calcium-dependent serine proteinase (CASP) which degrades the extracellular matrix proteins type ...
- Cell surface antigen 114/A10 (3 copies).
- Cell surface glycoprotein complex transmembrane subunit .
- Coagulation associated proteins C, Z (2 copies) and S (4 copies).
- Coagulation factors VII, IX, X and XII (2 copies).
- Complement C1r/C1s components (1 copy).
- Complement-activating component of Ra-reactive factor (RARF) (1 copy).
- Complement components C6, C7, C8 alpha and beta chains, and C9 (1 copy).
- Epidermal growth factor precursor (7-9 copies).

'C': conserved cysteine involved in a disulfide bond.
'G': often conserved glycine
'a': often conserved aromatic amino acid
'*': position of both patterns.
'x': any residue
-Consensus pattern: C-x-C-x(5)-G-x(2)-C
[The 3 C's are involved in disulfide bonds]
http://www.expasy.ch/sprot/prosite.html


# Multiple Alignment 

## PROFILES

## Profiles

| 2hhb | Human Alpha Hemoglobin | R | V | D | C | V | A | Y | K |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HAHU | R | V | D | C | V | A | Y | K | 100 |
|  | HADG | R | V | D | C | $V$ | A | Y | K | 89 |
|  | HTOR | R | $V$ | D | C | A | A | Y | Q | 76 |
|  | HBA CAIMO | R | V | D | P | V | A | $Y$ | K | 73 |
|  | HBAT HORSE | R | $V$ | D | P | A | A | $Y$ | Q | 62 |
| 1mbd | Whale Myoglobin | A | I | C | A | P | A | $Y$ | E |  |
|  | MYWHP | A | I | C | A | P | A | Y | E | 100 |
|  | MYG_CASFI | R | I | C | A | P | A | Y | E | 85 |
|  | MYHU | R | I | C | V | C | A | $Y$ | D | 75 |
|  | MYBAO | R | 1 | C | V | C | A | $Y$ | D | 71 |
| Eisenb | erg Profile Freq. A |  | 0 | 0 | 2 | 2 | 9 | 0 | 0 | $\uparrow$ |
| Eisenb | erg Profile Freq. C | 0 | 0 | 4 | 3 | 2 | 0 | 0 | 0 | Identity |
|  |  | : |  |  |  |  |  |  | $\vdots$ |  |
| Eisenb | erg Profile Freq. V | 0 | 5 | 0 | 2 | 3 | 0 | 0 | 0 |  |
| Eisenb | erg Profile Freq. Y | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 |  |
| Conse | sus $=$ Most Typical A.A. | R | V | D | C | V | A | Y | E |  |
| Better Consensus = Freq. Pattern (PCA)$\check{s}=(A, 2 V, C, P) ; \mu=(4 K, 2 Q, 3 E, 2 D)$ |  | R | iv | cd | š | š | A | $Y$ | $\mu$ |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Entropy => Sequence Variability |  | 3. | 7. | 7. | 14 | 14 | 0 | 0 | 14 |  |

Profile : a position-specific scoring matrix composed of 21 columns and N rows ( $\mathrm{N}=$ length of sequences in multiple alignment)

## Cons.

$$
\begin{array}{r}
\text { Gap } \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
25 \\
25 \\
25 \\
25 \\
100 \\
100 \\
50 \\
100 \\
100 \\
100 \\
100 \\
31 \\
31 \\
31 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
50 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
1
\end{array}
$$

| 2hhb | Human Alpha Hemoglobin | R | V | D | C | V | A | Y | K |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HAHU | R | V | D | C | $V$ | A | Y | K | 100 |
|  | HADG | R | $V$ | D | C | $V$ | A | $Y$ | K | 89 |
|  | HTOR | R | V | D | C | A | A | $Y$ | Q | 76 |
|  | HBA CAIMO | R | $V$ | D | P | $\checkmark$ | A | $Y$ | K | 73 |
|  | HBAT_HORSE | R | V | D | $P$ | A | A | $Y$ | Q | 62 |
| 1mbd | Whale Myoglobin | A | 1 | C | A | P | A | $Y$ | E |  |
|  | MYWHP | A | , | C | A | P | A | Y | E | 100 |
|  | MYG_CASFI | R |  | C | A | P | A | $Y$ | E | 85 |
|  | MYHU | R | 1 | C | V | C | A | $Y$ | D | 75 |
|  | MYBAO | R | 1 | C | $V$ | c | A | $Y$ | D | 71 |
| Eisenberg Profile Freq. AEisenberg Profile Freq. C |  | 1 | 0 | 0 | 2 | 2 | 9 | 0 | 0 | $\stackrel{\uparrow}{\text { Identity }}$ |
|  |  | 0 | 0 | 4 |  | 2 | 0 | 0 | ? |  |
| Eisenberg Profile Freq. C |  | : |  | . | : | ! | ! |  | . |  |
| Eisenberg Profile Freq. V |  | 0 | 5 | 0 | 2 | 3 | 0 | 0 | 0 |  |
| Eisenb | erg Profile Freq. Y | 0 | 0 | 0 | , |  | - | 9 | 0 |  |
| Consensus = Most Typical A.A. |  | R | V | D | C | $V$ | A | Y | E |  |
| Better Consensus = Freq. Pattern (PCA)$\check{s}=(\mathrm{A}, 2 \mathrm{~V}, \mathrm{C}, \mathrm{P}) ; \mu=(4 \mathrm{~K}, 2 \mathrm{Q}, 3 \mathrm{E}, 2 \mathrm{D})$ |  |  | iv | cd | š | š | A | Y | $\mu$ |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Entrop | y $\boldsymbol{= >}$ Sequence Variability | 3. | 7. | \% | 14 | 14 | 0 | 0 | 14 |  |

## Profiles formula for position M(p,a)

$\mathbf{M}(\mathbf{p}, \mathrm{a})=$ chance of finding amino acid a at position $\mathbf{p}$
$M_{\text {simp }}(p, a)=$ number of times a occurs at $p$ divided by number of sequences However, what if don't have many sequences in alignment? $M_{\text {simp }}(p, a)$ might be baised. Zeros for rare amino acids. Thus:
$M_{\text {cplx }}(p, a)=\Sigma_{b=1 \text { to } 20} M_{\text {simp }}(p, b) \times Y(b, a)$
$\mathrm{Y}(\mathrm{b}, \mathrm{a})$ : Dayhoff matrix for $a$ and $b$ amino acids

$$
S(p, a) \sim \Sigma_{a=1 \text { to } 20} M_{\text {simp }}(p, a) \ln M_{\text {simp }}(p, a)
$$

## Scanning for Motifs with PWMs

Position Weight Matrices define an additive scheme for scoring sequence. Often,
the weights are simply log likelihood ratios of observing a nucleotide in a binding site
relative to genomic background. Sequences are scanned by scoring every site, on
both the forward and reverse complement strands, and identifying matches as
shown in the schematic below:
A particular site is evaluated by adding up the entries from the scoring matrix at
each position, and comparing the sum to a match threshold. For log ratio PWMs, an
empirically chosen threshold of $60 \%$ of the maximum positive score has been used
by Harbison et al. and is approximately equal to cutoffs determined by the principled
cross-validated method presented in Maclsaac et al. More sophisticated algorithms
developed specifically for motif scanning are described briefly in Figure 3.

## $\Psi$-Blast

Parameters: overall threshold, inclusion threshold, interations

- Automatically builds profile and then searches with this
- Also PHI-blast

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
Stephen F. Altschul*, Thomas Zheng Zhang ${ }^{2}$, Webb Miller ${ }^{2}$ a


# PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) 



## Low-Complexity Regions

- Low Complexity Regions must be filtered out
$\diamond$ Different Statistics for matching AAATTTAAATTTAAATTTAAATTTAAATTT than
ACSQRPLRVSHRSENCVASNKPQLVKLMTHVKDFCV
$\diamond$ Automatic Programs Screen These Out (SEG)
$\diamond$ Identify through computation of sequence entropy in a window of a given size
$H=\Sigma f(a) \log _{2} f(a)$
- Also, Compositional Bias
$\diamond$ Matching A-rich query to A-rich DB vs. A-poor DB



# Multiple Alignment: Probabilistic Approaches for Determining PWMs 

- Expectation Maximization: Search the PWM space randomly
- Gibbs sampling: Search sequence space randomly.


## Expectation-Maximization (EM) algorithm

- Used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables.
- EM alternates between performing
- an expectation (E) step, which computes an expectation of the likelihood by including the latent variables as if they were observed, and
- a maximization (M) step, which computes the maximum likelihood estimates of the parameters by maximizing the expected likelihood found on the E step.
- The parameters found on the M step are then used to begin another E step, and the process is repeated.

1. Guess an initial weight matrix
2. Use weight matrix to predict instances in the input sequences
3. Use instances to predict a weight matrix
4. Repeat $2[\mathrm{E}$-step] \& 3 [ M -step] until satisfied.

Another good source is Wes Craven's 776 course: https://www.biostat.wisc.edu/~craven/776/lecture9.pdf
[Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/]
[Also Adapted from C Bruce, CBB752 '09]

# Multiple Alignment 

## Gibbs Sampling

## Initialization

- Step 1: Randomly guess an instance $s_{i}$ from each of $t$ input sequences $\left\{S_{l}, \ldots, S_{t}\right\}$.



## Gibbs sampler

- Steps 2 \& 3 (search):
- Throw away an instance $s_{i}$ : remaining $(t-1)$ instances define weight matrix.
- Weight matrix defines instance probability at each position of input string $S_{i}$
- Pick new $s_{\underline{i}}$ according to probability distribution (not necessarily always the $s_{i}$ giving the highest prob.)
- Return highest-scoring motif seen


## Sampler step illustration:



## Comparison

- Both EM and Gibbs sampling involve iterating over two steps
- Convergence:
- EM converges when the PSSM stops changing.
- Gibbs sampling runs until you ask it to stop.
- Solution:
- EM may not find the motif with the highest score.
- Gibbs sampling will provably find the motif with the highest score, if you let it run long enough.


# Multiple Alignment 

## HMMs

Hidden Markov Model:

- a composition of finite number of states,
- each corresponding to a column in a multiple alignment
- each state emits symbols, according to symbol-emission


## HMMs

 probabilitiesStarting from an initial state, a sequence of symbols is generated by moving from state to state until an end state is reached.

state sequence (hidden):
... (1) (1) (1) (1) (2) (2) (1) (1) ...
transitions: ? 0.99

symbol sequence (observable):

| $\ldots$ | $\mathbf{A}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{A}$ | $\mathbf{A}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{C}$ | $\mathbf{G}$ | $\mathbf{A}$ | $\mathbf{T}$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| emissions: | 0.4 | 0.4 | 0.1 | 0.4 | 0.4 | 0.5 | 0.5 | 0.4 | 0.5 | 0.4 | 0.4 |  |

## Algorithms

## Probability of a path through the model

## Viterbi maximizes for seq

## Forward sums of all possible paths

Forward Algorithm - finds probability P that a model $\lambda$ emits a given sequence $O$ by summing over all paths that emit the sequence the probability of that path

Viterbi Algorithm - finds the most probable path through the model for a given sequence (both usually just boil down to simple applications of dynamic programming)

# EX of Richness of the HMM Modelling Framework: Predicting Membrane Proteins 



B


C


