Biomedical Data Science: Mining and Modeling

Globular Protein Structure I

Prof. Corey O'Hern
Department of Mechanical Engineering \& Materials Science
Department of Physics
Department of Applied Physics
Program in Computational Biology \& Bioinformatics Integrated Graduate Program in Physical \& Engineering Biology
Yale University

Schedule

Mon./Wed. April I9 and 21: Globular Protein Structure

Thurs./Mon. April 22 and 26: Intrinsically Disordered Proteins
Mon.April 28: Molecular Dynamics Simulations

2

What are proteins?

-Proteins are important; e.g. for catalyzing and regulating biochemical reactions, transporting molecules, ...
-Linear polymer chain composed of tens (peptides) to thousands (proteins) of monomers

- Monomers are 20 naturally occurring amino acids
-Different proteins have different amino acid sequences
- Structureless, extended unfolded state
- Compact, 'unique' native folded state (with secondary and tertiary structure) required for biological function
- Sequence determines protein structure (or lack thereof)
-Proteins unfold or denature with increasing temperature or chemical denaturants

Amino Acids I

- Side chains differentiate amino acid repeat units -Peptide bonds link residues into polypeptides

Amino Acids II

Glycine (Sly)
Alanine (Ala)
Valine (Val)
Leucine (Leu) Isoleucine (le) Methionine (Met) Tryptophan (Try) Phenylalanine (Phe)
Proline (Pro)

Serine (Ser)
Threonine (Chr)
Cysteine (Mys)
Tyrosine (Tyr) Asparagine (Ass)
Glutamine (GIn)

Basic
Arginine (Arg)
Histidine (His)
Aspartic Acid (Asp) Glutamic Acid (Blu)
$(-)$
Lysine (Lys)
5
(+)

The Protein Folding Problem:

What is 'unique' folded 3D structure of a protein based on its amino acid sequence? Sequence \rightarrow Structure

Lys-Asn-Val-Arg-Ser-Lys-Val-Gly-Ser-Thr-Glu-Asn-Ile-Lys- His-Gln-Pro- Gly-Gly-Gly-...

Why do proteins fold (correctly \& rapidly)??

Levinthal's paradox:

For a protein with N amino acids, number of backbone conformations/minima

$$
N_{c} \sim \mu^{2 N} \quad \mu=\# \text { allowed dihedral angles }
$$

How does a protein find the global optimum w/o global search? Proteins fold much faster.

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{c}} \sim 3^{200} \sim 10^{95} \\
& \tau_{\text {fold }} \sim \mathrm{N}_{\mathrm{c}} \tau_{\text {sample }} \sim 10^{83} \mathrm{~s} \quad \text { vs } \quad \tau_{\text {fold }} \sim 10^{-6}-10^{-3} \mathrm{~s} \\
& \tau_{\text {universe }} \sim 10^{17} \mathrm{~s} \quad 7
\end{aligned}
$$

Energy Landscape

$$
\begin{aligned}
& \mathrm{U}, \mathrm{~F}=\mathrm{U}-\mathrm{TS} \\
& \vec{\nabla} U=0 \quad \begin{cases}\nabla^{2} U>0 & \text { Minimum (M) } \\
\nabla^{2} U=0 & \text { saddle point } \\
\nabla^{2} U<0 & \text { Maximum (m) } 8\end{cases} \\
& \begin{array}{c}
\left.\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right\} \\
\text { all atomic } \\
\text { coordinates; } \\
\text { dihedral angles }
\end{array}
\end{aligned}
$$

Roughness of Energy Landscape

smooth, funneled
(Wolynes et. al. 1997)

rough

Critical Assessment of Structure Prediction (CASP)

Driving Forces

-Folding: hydrophobicity, hydrogen bonding, van der Waals interactions, ...
-Unfolding: increase in conformational entropy, electric charge...

12

FIGURE 5 Fractions of amino acids with $\mathrm{A}, \mathrm{rSASA} \leq 10^{-3}$ and $\mathrm{B}, \mathrm{rSASA}>0.5$ for residues in the Dun1.0 (grey), PPI (blue), and TM (red) datasets. The fractions are defined relative to the total number of residues in each rSASA category. C, The fractions of core residues (light bars) and non-core residues (rSASA>0.5, dark bars) among the 11 non-charged residues (Ala, Gly, lle, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and Val) [Color figure can be viewed at wileyonlinelibrary.com]

13

Solvent Accessible Surface Area and rSASA

- SASA $_{\text {res }}$
- $\mathrm{SASA}_{\text {dip }}$

RNase-S set 4
$r S A S A=S A S A_{\text {res }} / S_{\text {ASA }}^{\text {dip }}=[0, I]$
14

Secondary Structure: Loops, α-helices, β-strands/sheets

β-strand

-Right-handed; three turns
-Vertical hydrogen bonds between NH_{2} (teal/white) backbone group and $\mathrm{C}=\mathrm{O}$ (grey/red) backbone group four residues earlier in sequence - Side chains (R) on outside; point upwards toward NH_{2} -Each amino acid corresponds to $100^{\circ}, 1.5 \AA, 3.6$ amino acids per turn
$\bullet(\phi, \psi)=\left(-60^{\circ},-45^{\circ}\right)$

- α-helix propensities: Met, Ala, Leu, Glu
-5-10 residues; peptide backbones fully extended - NH (blue/white) of one strand hydrogen-bonded to $\mathrm{C}=\mathrm{O}$ (black/red) of another strand ${ }^{-} \mathrm{C}_{\alpha}$,side chains (yellow) on adjacent strands aligned; side chains along single strand alternate up and down
$\cdot(\phi, \psi)=\left(-135^{\circ}, 135^{\circ}\right)$
- β-strand propensities:Val,Thr,Tyr,Trp,

Phe, lle

$\mathrm{N}_{\mathrm{s}}=62,938$ monomeric xtal structures

Bond Angles

17

20

Backbonde Dihedral Angles

3N-6 DoF

-(N-I) Bond lengths
-(N-2) Bond angles
$=\mathrm{N}-3 \quad$ Dihedral angles

22

$\phi: \mathrm{C}^{\prime \mathrm{i}-1} \mathrm{NC}_{\alpha} \mathrm{C}^{\prime}$
$\psi: \mathrm{NC}_{\alpha} \mathrm{C}^{\prime} \mathrm{N}^{i+1}$
$\omega_{1}: \mathrm{C}^{\mathrm{i}-1}{ }_{\alpha} \mathrm{C}^{\mathrm{i}-1} \mathrm{NC}_{\alpha}$
$\omega_{2}: \mathrm{C}_{\alpha} \mathrm{C}^{\prime} \mathrm{N}^{\mathrm{i}+1} \mathrm{C}^{\mathrm{i}+1}{ }_{\alpha}$
23

Ramachandran Plot: Determining Steric Clashes

Backbone dihedral angles from PDB

25

Dunbrack I. 0

Figure 5. Probability distributions $P(\phi, \psi)$ for the backbone dihedral angles ϕ and ψ obtained from MD simulations of an Ala dipeptide mimetic using recent versions of the CHARMM and Amber force fields, their associated optimized water models, and with and without the "ILDN-NMR" and "CMAP" dihedral angle potential corrections: (a) Amber99sb + TIP4P-Ew, (b) Amber99sb-ILDN-NMR + TIP4P-Ew, (c) CHARMM27 + TIP3SP, and (d) CHARMM27-CMAP + TIP3SP. Subpanels (e) and (f) correspond to the Ala $\phi-\psi$ distributions from the Dunbrack Database ${ }^{38}$ and the Wu "Coil-3" library, ${ }^{10}$ respectively. The Ramachandran hard-sphere ${ }^{3}$ normal and outer limits (pink and blue lines, respectively) for $\tau=110^{\circ}$ are overlaid on each panel. The Amber and CHARMM MD simulations were thermally equilibrated at 303 K and sampled for 500 ns .

(c)

(e)

(g)
(h)

Figure S1: Stick representations of (a) Ile, (b) Phe, (c) Val, (d) Tyr, (e) Trp, (f) Leu, (g) Thr, and (h) Ser dipeptide mimetics. The carbon, nitrogen, oxygen, and hydrogen atoms are shaded green, blue, red, and white, respectively. The side chain dihedral angles χ_{1} and χ_{2} and several key atoms are labeled. The residues before ($i-1$) and after ($i+1$) the i th central residue are labeled at the C_{α} atom.

27

Thr

28

Ile

29

1. Can the structural properties of protein cores

 be quantitatively modeled using hard-spheres?2. What is the packing fraction in protein cores?
3. Can simple hard-sphere model improve computational design of protein-protein interactions?

30

