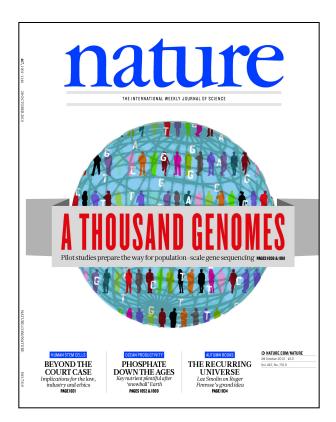
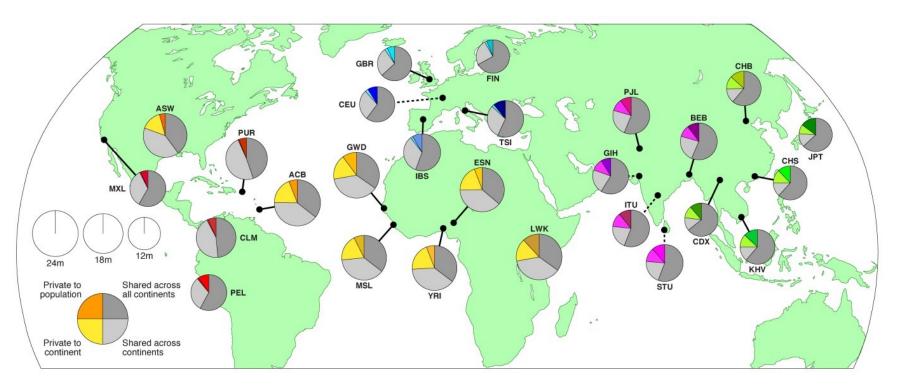
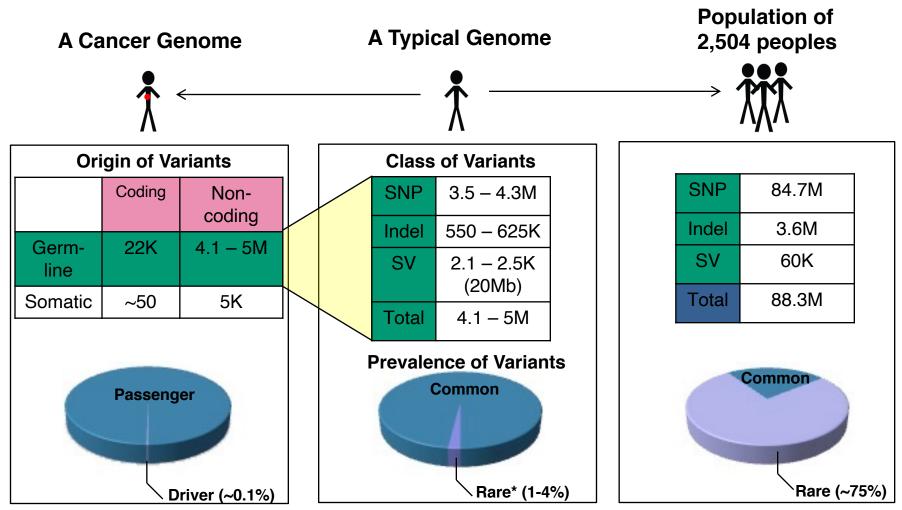

Biomed. Data Sci: 1000G+PCAWG Summary


Mark Gerstein, Yale University gersteinlab.org/courses/452 (last edit in spring '21, final)


1000G SV (Pilot, **Phase I & III**)

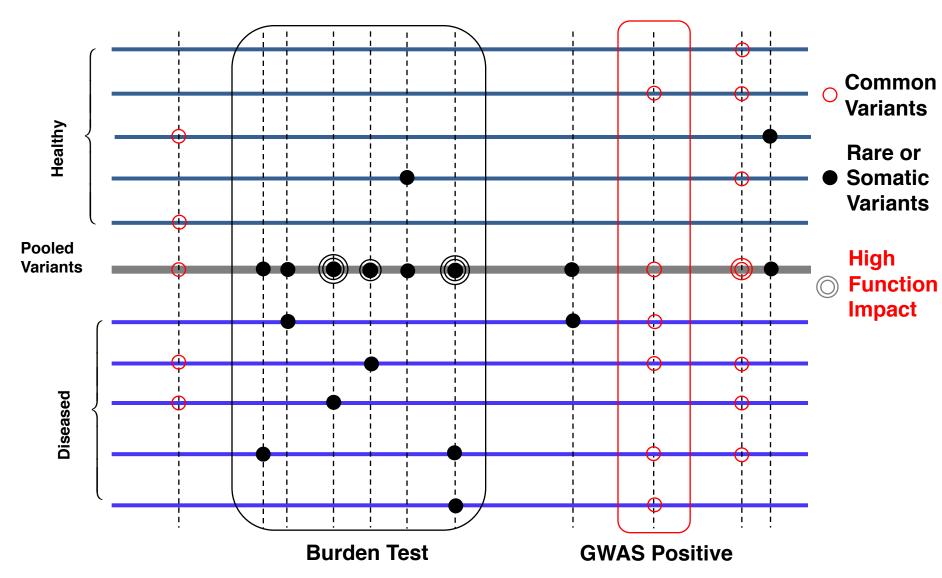
Many different SV callers compared & used

- including SRiC & CNVnator but also VariationHunter, Cortex, NovelSeq, PEMer, BreakDancer, Mosaik, Pindel, GenomeSTRiP, mrFast....
- Merging
- Genotyping
- Breakpoint assembly
- Mechanism Classification


Summary Stats of 1000GP SV Phase3

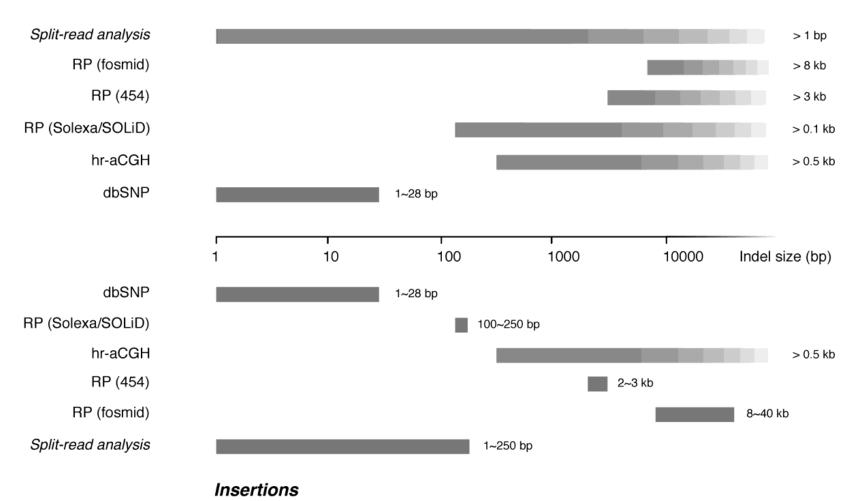
- 68,818 SVs
- 2,504 unrelated individuals
- 26 populations
- 37,250 SVs with resolved breakpoints

[2] 1000GP Phase3 SV paper. Submided to Nature, 2015.[3] 1000GP ConsorSum. Submided to Nature, 2015.


Human Genetic Variation

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

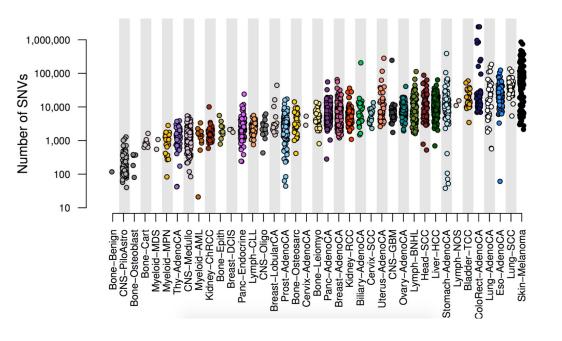
The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74 Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108


Association of Variants with Diseases

Phase 3: Median Autosomal Variant Sites Per Genome

	AFR 661 8.2		AMR 347 7.6		EAS 504 7.7		EUR 503 7.4		SAS 489 8.0	
Samples										
Mean Coverage										
	Var. Sites	Singletons	Var. Sites	Singletons						
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large Deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (LINE1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
NonSynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBS	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

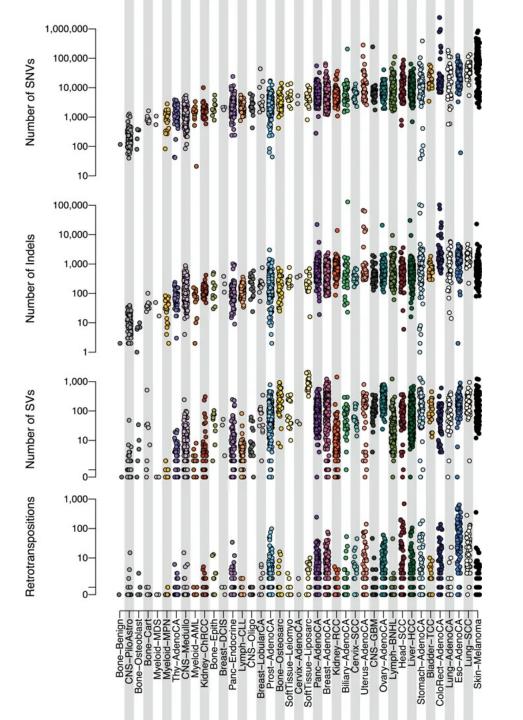
Different Approaches Work Differently on Different Events


Deletions

7 = Lectures.GersteinLab.org

[Zhang et al. ('11) BMC Genomics]

PCAWG Summary


PCAWG : most comprehensive resource for cancer whole genome analysis

Adapted from Campbell et. al., bioRxiv ('17). Now published as Nature 578: 82–93 (2020) **Project Goals:**

- To understand role of non-coding regions of cancer genomes in disease progression.
- Union of TCGA-ICGC efforts
- Jointly analyzing ~2800 whole genome tumor/normal pairs
 - > > 580 researchers
 - > 16 thematic working groups
 - ~30M total somatic SNVs

PCAWG Summary Variant Totals by Cancer

Nature 578: 82–93 (2020)