Biomedical Data Science:
Mining and Modeling

Deep Learning llI:
Deep Generative Models, Variational Autoenocder,
and Generative Adversarial Networks

Dr. Martin Rengiang Min
NEC Laboratories America

Directed Probabilistic Generative Models with Hidden Units

We want to train a directed generative model p

generative network inference network

p(x,h) = p(x|h1)p(hy|h2)...p(h.)
q(h[x) = g(h1[x)q(h2[h1)...q(h.|h.-1)

e Our goal is to learn the model parameters to maximize the log-probability of data x
o Learning: learn the model parameters maximizing log p(x)
o Inference: infer the hidden states from p(h | x)

Variational Inference

We want to train a directed generative model p

generative network inference network
p(hL)
Variational Bound of Log-
Likelihood P(x) p(h,|h,) a(h,.Ih)

p(x, h) = p(x|h1)p(hy|h2)...p(h.)
q(h|x) = q(h1|x)q(h2[h1)...q(h.|h._1)

mg,x Eﬁ(m) lnpg(a;) = mgxx]Eﬁ(x) 1n/p9(£l?, z)dz

z

. po(z, 2)
. _ — , In &8 2/
mngIEp(x) In pg(x) 211111 D(q(2) || po(z | :c))] mea,xIEp(w) [max]Eq() In)

Every data point x has its own variational parameters (q(z)): flexible but not scalable. 3

Amortized Variational Inference

All data points share a variational inference network Q parameterized by a neural network.

Variational Bound of Log- lOg PH (.73) - log Z PO (Qj, h)
h

Likelihood P(x)

We want to train a directed generative model p

generative network inference network P9 (.’,U h)
)

o) >) Qg(hlz)log
p(h h,) a(h,Jh)
= Fgllog Py(z,h) —log Q4 (h|z)]
p(x, h) = p(x|h1)p(h1 hy)...p(h.) — L(il? , 0, (/5)

q(h|x) = g(h1[x)q(h2|h1)...q(h.[h,_1)

By rewriting the bound as

L(z,0,9) =log Pp(xr) — KL(Qg(h|z), Po(h|x)), «

The Reparameterization Trick Using a Deterministic Function Mapping

z ~ g4z|x?) = N(z; 4, 6*O1)
Z=p+06 0Oe€,wheree ~ N(0,I)

Original form Reparameterised form

- - - - - - - - -----=-- -7 1 r--"=-=- - - - - - - =-"=-"=-=-=-== 1

I I | |

: f | | Backprop <l |

|) |

| ~ q(z|d,x) | | 0f/z L2y = 9(@x8) |

| N4 |

i &y & 1 9f/dg B X ~pe) |

] 1= 9L/ :

\ | |\ I
: Deterministic node [Kingma, 2013]
[Bengio, 2013]

. . Random node [Kingma and Welling 2014]

[Rezende et al 2014]
Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014

Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

Reconstructed
Input <o Ideally they are identical. ~ ---------------------- - .
) input
XA X
Probabilistic Encoder
4 (2[x)
Mean w Sampled
latent vector
Probabilistic
X | Decoder > 5/
po(x|z)
o
Std. dev
_ An compressed low dimensional

z=p+oQe representation of the input.
e ~N(0,I)

Picture Credit: https://lilianweng.qithub.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Variational Inference with the Reparameterization Trick
log pp(x), -+, x(N)) = 7 log pe(x(*)

log pe(x'") = Dic1(qg(2|x")||pe(2x")) + L£(6, ¢: xV)

log pe(x) > L(0,¢;x\V) = Eq, (z/x) [10g 4 (2|x) + log pe (%, 2)]

ELBO:

L£(0, p:xV) = —DKL(q¢(z|x(i))||p9(z)) + E g (2]x9) [logpg(x(i)|z)]

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 7

Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

L£(8, ¢;xD) = —Dic 1. (g0 (21x D) [po(2)) + E,, 0 [k)g pg(x(i)|z)]

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

f* = argmaxE,.q: (log p(z[2))

feF
_ 2
= argmax, . (—Hx QI)
fEF : 2c

J L
; 1 i i i 1 i), (i
£(0,¢;xD) = 2> (1+log((01”)?) = (u{)? = (617)?) + = " log pe(x[2""1)
2 L —

1
where z") = p) 46D o e and €V ~ N(0,1)

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 8

Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

Reconstructed
Input <o Ideally they are identical. ~ ---------------------- - .
) input
XA X
Probabilistic Encoder
4 (2[x)
Mean w Sampled
latent vector
Probabilistic
X | Decoder > 5/
po(x|z)
o
Std. dev
_ An compressed low dimensional

z=p+oQe representation of the input.
e ~N(0,I)

Picture Credit: https://lilianweng.qithub.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

VAE Loss

N(O, I) —

\/h
. K — f .

X o, =h(x) x = f(z)

loss = C||x-X]|* + KLIN(;,0),N(0,1)] = C||x-f() || + KL[N(g(x), h(x)), N(0,)]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Training VAE Using Mini-batch Variational Inference with the
Reparameterization Trick

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3|can be used. We use settings M/ = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM + Random minibatch of M datapoints (drawn from full dataset)
€ < Random samples from noise distribution p(e€)
g V9,¢£M (8, ¢; XM €) (Gradients of minibatch estimator (8))
0, ¢ < Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (0, ¢)
return 6, ¢

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 11

VAE for Generating MNIST Digits

QO ~Mts 0O
~ MM T -
N b O0Q

FOP G Bovo —
0o O N
Lk vale Wl XU R oY)}

~ el o~-T -
LM e PPQ L
~——=ummxOW®w
Wm0 LA N
O Oy w oo —
o™t NN
CoAorerI9 QL

QO350
s~ n
LR BRL BY LR
SO m
0O oy~
DO QS
AT LT LB EL LT RBRT
A2 22 2 R R

l

left: 1st epoch, middle: gth epoch, right: origina

12

Picture Credit: http://kvfrans.com/variational-autoencoders-explained/

http://kvfrans.com/variational-autoencoders-explained/

Learned 2D Manifold by VAE

QDA NANNANANAANNNNNSNNNNS
QA ELLLLLLWN NN~
QAWK LLLVYS YN~
QAUAVVNININ Ly Gy tote ©OVV® v~~~
QOAVVHHINNNVWW W BVIVIY W - ——
QOOOVNHINININMEEBIBDIVI D W - ——
QOAOAQOOMHINMMMoEMADIID D @ - - —
QOODOMMNMN NN ®DO DD D = —
ODODOMMM MMM ®DD DD e e —
QODOMW MMM MNNW® DD e e —
QOMME MMM NN L0 e on om o e —
QOMME M " 0" 0O 0000 oo o - —
QA% 0207000000 00 n o~ 0~ 0~
R L L N Nl ol Ul R
Gt~
Jaddddddodogororrororrraaaoan~N
SAddadddocrrrrr T TIIIINN
SAdddgTrrrrrrdFFTTIITIRINN
SAdTTTrTrrrrrr>rrPrI2R2RNN
I g gl e e i« el ol ol ol ol ol O N N NN

(b) Learned MNIST manifold

(a) Learned Frey Face manifold

13

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014

VAE with Convolutional and Transposed Convolutional Layers

mean vector

sampled
latent vector

ALY

Encoder b Decoder

Network Network
N ”

(conv) (deconv)

standard deviation
vector

Picture Credit: http://kvfrans.com/variational-autoencoders-explained/

14

http://kvfrans.com/variational-autoencoders-explained/

Autoencoder vs. Variational Autoencoder

neural network neural network
encoder decoder

X X =d(z)

loss = ||x-X|[2= [|x-d@)|]? = ||x-dex)|?

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder vs. Variational Autoencoder

encoder

e

encoded vector

(in latent space)

training |

process —1
input

generation

process

sampler

sampled vector

(from latent space)

decoder

decoded content

(reconstructed input /
generated content)

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

16

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder vs. Variational Autoencoder

O
! A

encoded data can be decoded
O without loss if the autoencoder

has enough degrees of freedom
A encoder decoder

b sponpled from e O
. s
“training” data for fw M W without explicit regularisation,

some points of the latent space
the autoencoder M . p
are “meaningless” once decoded

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 17

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder vs. Variational Autoencoder

neural network

neural network
decoder

encoder

X X =d(z)

loss = ||x-X]|]> + KLI SN, DT = || x-d(2)]2 + KL ,N(O, 1)]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder vs. Variational Autoencoder

O [\ P fromdis gty O O
Pace mmetning
mdeq,a,’,c] &55'
o . A
pinds i the /
GQDSQ |&EF}W‘H‘\A ¢
MM’{'SW @
inthe latend space are
simillar once decoded

irregular latent space x V regular latent space

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

19

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder vs. Variational Autoencoder

\
! A
.. ‘ _—
- 1
\

\
~
O

what can happen without regularisation x V what we want to obtain with regularisation

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder vs. Variational Autoencoder

\
\
4

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

21

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Problems of VAE: Overlapping Latent Space

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 22

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Conditional VAE (There Are Other Conditioning Priors)

[CLIN (Y. X). 2(Y. X)) [N(0.T)] | Decoder
N (P)

+ L
(V. X)|[2(Y, X) *
~_-7
Encoder ISamp[e € from N'(0. 1) |
(@

Figure 6: Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure 4. Right: the same model at test time, when we want to sample from
P(Y|X).

Picture Credit: https://arxiv.orq/pdf/1606.05908.pdf

23

https://arxiv.org/pdf/1606.05908.pdf

Conditional VAE (There Are Other Conditioning Priors)

log po(y|x) > —KL (g4 (2|%,y)||lpe(z|x)) + Eq, (21x,y) | l0g Do (y|x, 2)]

and the empirical lower bound is written as:

L

~ 1

Lovae(%,¥;0,6) = —KL (g4(2/%,¥)||po (2lx)) + 7 > logpa(y[x,2),
=1

z() = g4(x,y,eW),) ~ N(0,I) and L is the number of samples.

Sohn et al., Learning Structured Output Representation using Deep Conditional Generative Models. NIPS 2015. 24

The Reparameterization Trick in VAE

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

Let’s forget about variational inference for maximizing log p(x) but focus on the
probability distribution of p(x|z) itself, we can easily sample from p(x|z), which leads
to a nice GENERATIVE model and transforms a simple Gaussian distribution to a
complex data distribution p4(x) through a one-to-one mapping f: z — x

A direct approach to aligning our generated data distribution p4(x) with real data
distribution p.(x) is to perform moment matching, for e.g., minimizing maximum
mean discrepancy in a high-dimensional feature space induced by a kernel (kernel
MMD).

25

Transform a Simple Distribution to a Complex Distribution

» GENERATIVE »
NETWORK

Input random variable The generative network Output random variable The output of the
(drawn from a simple transforms the simple (should follow the targeted generative network
distribution, for random variable into distribution, after training once reshaped.
example uniform). a more complex one. the generative network).

Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

26

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

An Indirect Approach for Comparing Distributions

p(z) = N(0,1)
p(z|z) = N(f(2),cl) ferF c>0

e Transform a simple Uniform/Gaussian distribution p(z) to a complex data
distribution p4(x) through a one-to-one mapping f: z — x

e An indirect approach is to assume that we have an oracle discriminator that can
perfectly discriminates whether or not a data point is from the real data
distribution. We can make use of this oracle discriminator to improve our
generative network such that our generated data distribution perfectly aligns
with the real data distribution.

e In practice, we don’t have this oracle discriminator, but we can treat it as a deep
neural network and learn it from data. 27

Generative Adversarial Network (GAN)

e The goal of the discriminator D is to discriminate whether a sample comes from
the real data distribution (training data) or the generated data distribution
(generated data).

e The goal of the generator G is to transform a simple (e.g., Gaussian, Uniform)
distribution to a real data distribution such that the generated sample will fool
the discriminator.

e This is a minmax two-player game. In a global optimum, D will output %%
everywhere and pgy(X) = pr(X)

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
28

Generative Adversarial Network (GAN)

Il Forward propagation (generation and classification) Il Backward propagation (adversarial training)
o © o ©O
© 5 o o © 5, o o
o 0 0 o ° ©o 0o _©
oo o (o] » ’ Q 0°°° » » %’—eo’ o ~\\\
GENERATIVE 0o ® o © o0 DISCRIMINATIVE 0o %o 790 09 .
© 0,70 NETWORK ® ° NETWORK % °
o <= <= 000 < <= QO‘P
o o - 0
o "0 o
> >
Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.

Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 29

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

Generative Adversarial Network (GAN)

3 I '
. .
.8 e

/Y N/

(a) (b) (©) (d)

PP,

Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p4 (G) (green, solid line). The lower horizontal line is
the domain from which 2z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping = (G(z) imposes the non-uniform distribution pg on
transformed samples. GG contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: p, is similar to pga and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

— Paa(®)__ (c) After an update to G, gradient of D has guided G (z) to flow to regions that are more likely

Pdata () +Pg (@) *
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p; = pgaa. The discriminator is unable to differentiate between
the two distributions, i.e. D(z) = 3.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.

30

Optimal D of Generative Adversarial Networks

m(%n max V(D,G) = Egrppa(a)log D(x)] + E,p, (2)llog(1 — D(G(2)))]-

y = alog(y) + blog(l - y)
b

if y=alog(y)+ blog(l — y),the optimal y is i:;bl—‘y L
a > =y ptimal y* by setting y’ = 0.
— _J— 1—*y* _b
Y a+ b ylzsz
Optimize D(x) = pr(x) log D(x) + p,(x) log(1 — D(x)), we get
— D) = — 2

pr(x) + pg(x)

Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 31

Generative Adversarial Network (GAN)
minmax V (D, G) = Eqrpy(@) 108 D()] + E,op, (2)[log(1l — D(G(2)))].

G D
min V(D*, G) = / (p,(x) log D*(x) + p,(x) log(1 — D*(x)))dx
pg(x)

/x (” O log e+ pato TP)™

Pr +pg)

1
Dys(p,llpg) = 2DKL(prII >)+ —DKL(ngI
l pr()) (/ Pg(x) d)

(/pr(x) og ———— Pe(X) 1 gpr(prg(x) X

pr(x) + pgx)

_ 1 pr(x)
-2 (bg“/ P log)

1 Dg(X)
3 (log2 + / P log S P dx)

1 . N
= E(log4+ménV(D ,G))

min V(D*, G) = 2Dys(p,llpy) — 210g 2

Optimal Solution of Generative Adversarial Networks

minmax V (D, G) = Eqrpy(@) 108 D()] + E,op, (2)[log(1l — D(G(2)))].

G D

With p = q, the optimal value for D and V' is

prw=-L_ =1
p+q 2

.) 1 1
min max V(D, G) = Eyp »llog 5] + Eqep,pllog(l — 5)]
= —2log 2

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.

33

Training Algorithm of GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(V), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {x(), ..., 2("™)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3" [iogD (29) + 105 (1- D (6 ()]

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 2108 (1-0 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.

34

Deep Convolutional GAN (DCGAN): CNN Generator

7

G(2)

DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford et al., UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS. ICLR 2016

35

ples of DCGAN
AR l rl*_ :
|

SO K : s %
¢ = LILM - <Rp

-

Generated Sam

iy <

Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

36

Interpol

B . S

atiorn Results of DCGAN

¥ 5 e
b Sy &S
. =5 Bl s G AR
£ k0 AR S :k;k'
: = e e

37

Latent Vector (z) Manipulation Results of DCGAN

smiling
woman

man man woman

with glasses without glasses without glasses woman with glasses

GAN for Video Generation

Foreground Stream /'
3D convolutions
&,
5y,
@?/3,
Foreground
» ‘: Tanh
A k3
%, %, s, %%
+qp/$1\)/ £ %5/ ® ,120/ ey, \
Noise ')
100 dim mof+(1-mob—
& t
"5y &
JG*/J, *84”2/3/
Mask
M ins. 1N Sigmoid Generated Video
%Je, 8’“’/356/ - Space-Time Cuboid
2¢
5*15/1)9/ —_— . -
32{?2/ Replicate over Time
Background Stream %
2D convolutions ‘Sﬂs‘,b/ Background

Tanh

Video Generator Network: We illustrate our network architecture for the generator. The
input is 100 dimensional (Gaussian noise). There are two independent streams: a moving foreground
pathway of fractionally-strided spatio-temporal convolutions, and a static background pathway of
fractionally-strided spatial convolutions, both of which up-sample. These two pathways are combined
to create the generated video using a mask from the motion pathway. Below each volume is its size
and the number of channels in parenthesis.

Vondrick et al., Generating Videos with Scene Dynamics, NIPS 2016.

39

GAN for Music Generation

Engel et al., GANSYNTH: ADVERSARIAL NEURAL AUDIO SYNTHESIS. ICLR
2019. https://openreview.net/pdf?id=H1xQVn09F X

Generated Music Samples: https://magenta.tensorflow.org/gansynth

40

https://openreview.net/pdf?id=H1xQVn09FX
https://magenta.tensorflow.org/gansynth

Conditional GAN

00000 (00000,

(o 9 OOO@ |

([.C.QC] [OOOQO])

https://arxiv.org/pdf/1411.1784.pdf

41

https://arxiv.org/pdf/1411.1784.pdf

Domain Adaptation

target encoder

source Ba] m n
HyH
e

mm M

aw

~

ta rget

J

Picture Credit: Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017.

We have a lot of (labeled) training data in a
source domain, and we plan to deploy our
learned model in the source domain to a target
domain that has a different data distribution
from the one in the source domain.

42

Adversarial Feature Learning for Domain Adaptation

Pre-training Adversarial Adaptation Testing
4) /source images N\(R
source images N S
+ labels | Source |
' CNN ! _ targetimage ~.__ P
] == 9 . ! TS T
Source &= class ® domain ! Target ! | & 1 class
a > £ label i CNN + V3 —
CNN © |abe| target |mages £ 1 _a | g : Iabel
(@] S == 'O
A [Ap—
Target [a)
CNN
\. 4\ 4\ .

An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017.

43

CycleGAN

c ¥ LA
/—\ " R R /\ "
DX DY x Y N 7|7 Yy ~__7| X Y
H G 1 F F

N

cycle-consistency
: : @ \.... " loss
\——/ . cycle-consistency |,..s § \s'

F : loss ' ;

(a) | (b) | (©

(a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: x = G(z) = F(G(z)) = z, and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) =y

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.

44

CycleGAN Results

Monet _ Photos Zebras +~_ Horses) Summer Z_. Winter

horse — zebra

Photograph Monet Van Gogh - Cezanne
Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.

45

Text2Video: Goals and Challenges

Build a conditional generative model to generate videos from text capturing
different contextual semantics of natural language descriptions

Capable of capturing both static content and dynamic motion features of
videos

Challenges
— It’s hard to condition on text, a big gap
— It is hard to build powerful video generator
— No publicly available dataset

How? Integrating VAE and GAN
https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf

46

https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf

Model Overview

 We introduce an intermediate step called ‘Gist’ Generation.

e The model is trained end-to-end.

Text input |:>

Noise

U

VAE

Gist Generation

|:> Generated Gist |:>

Noise

U

Video GAN

i

Text input

Video Generation

47

What does the Gist do?

* Gist captures the static features of a video.

* Gist generation gives a sketch.

Noise

U

Video GAN

i}

Text input

Generated

|:> Video

48

The Complete Text2Video Model

RNN Encoder

t: kitesurfing
t: kitesurfing > at beach
at beach ! ! ’

kitesurfing at RNN Encoder

L L

o
g~ D~ [T~

CNN Encoder z,

Za

t: kitesurfing

atbeach TethFllter

RNN Encoder

—) gt/
Video Generator
Conv

-‘\‘
vems
=

t: kitesurfing

at beach

RNN Encoder

>
4
CNN Decoder Gist Encoder n, ~ N(0,1) Real Sample i Video Discriminator
zV

= Real?
Fake?

Framework of the proposed text-to-video generation method. The gist generator is within the green box. The encoded
text is concatenated with the encoded frame to form the joint hidden representation z4, which is further transformed into z4. The
video generator is within the yellow box. The text description is transformed into a filter kernel (Text2Filter) and applied to
the gist. The generation uses the feature z,. Following this point, the flow chart forms a standard GAN framework with a final
discriminator to judge whether a video and text pair is real or synthetic. After training, the CNN image encoder is ignored.

Li, Min, Shen, and Lawrence, AAAI 2018

https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf

49

https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf

Generated Video Samples

Play golf on grass "
Play golf on snow ’

Play golf on water 1

50

Text: Playing Golf on

— grass field

— SNOW

— water

More Examples

Gist

¥ -
B -

Video

51

More Examples

Playing golf Playing golf in swimming pool Swimming in swimming pool

nNE =

Sailing on the sea Sailing on snow Sailing on grass Running on the sea Running on sand

52

More Examples

Kitesurfing on the sea

| -
3 »1

Kitesurfing on grass

53

An Improved Text2Video Model

Person golfing in the field

Text |
encoder// % denotes
ﬂ\ convolution
P = @ operation
2, 2, @,
! f, f, f .
* D1(f)
‘
f
Dz() %
1 % b0 § |, Real (or)
2 S Fake
: @
i 5
=2
D ® =
m
}
3

[Mustration of our Text-Filter conditioning strategy. ”

Balaji, Min, Bai, Chellappa, and Graf. Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis. IJCAI 2019.

Generated Videos
TFGAN Baseline

5
X

A large green circle is moving in a zigzag A large yellow square is moving in a
path towards east diagonal path in the northeast direction

A large red triangle is moving in a A large red triangle is moving in a zigzag
straight line towards north and a large path towards south and a large blue
yellow square is moving in a zigzag path triangle is moving in a zigzag path

towards west towards west
55

Generated Videos

People
swimming in the
pool

Play golf on
grass

A boat sailing
in the sea

Play golf on Li et al. Previous
grass (2018) Model

56

People swimming in pool

Generated Videos

Person skiing in ocean

m =

Stir vegetables

57

Media Reports from Science, MIT Technology Review,
Communications of ACM, etc.

SCiellCC Home News Journals Topics Careers

g FRONTIERS OF & \ Nomination period now
] Fundacid BBVA open for the 11th edition
= e [

SHARE

00

Artificial intelligence is moving into movie production. SHAREGRID/UNSPLASH

New algorithm can create movies from just a
few snippets of text

By Matthew Hutson | Feb. 23,2018, 4:35 PM

Li, Min, et al., AAAI 2018

0.40

0.35 4

0.30 4

0.25 4

0.20

0.15 4

0.10 4

0.05 4

0.00 4

GAN Minimizes JS-Divergence to Update G

P(x)
Q(x)

Dk.(P||Q) = Z P(x) log ===

1

+
Dys(pllg) = 5 DeplI 5 +

2

2

-10

0

10

KL-divergency

2

1000

KL

0

5

10

15

20

25

30 3‘5
mean of q

+
—DKL(CI||p2—q)

JS-divergency

for VAE

for GAN

8

6

vanish gradient

JS

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aa1b490

1‘5 2‘0 2‘5 3‘0 3‘5
mean of q

59

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Real Image/Video Data is often Supported in a Low-D

Manifold
For e.g. MNIST digits, ImageNet Images, Videos, although the pixel space is very

high-dimensional.

It's easy to find a perfect discriminator to separate high-dimensional data
supported in low-dimensional space.

2.0 [1.0
. 0.8 i
L2 —Vgglog (I—D(G (z())))—> 0
0.6
10 £ =
[0.4 . ' .
F 0.5 02 orignal GAN generator’s gradient
0.0 - 0.0
1.0 1.0
06" 06"
0.0 0.4 0902 0.4
0.4 6 ol 0.2 0.4 6 s 0.2
X arpamcA X 810 00

Picture Credit:https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.htm| 60

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets’, NIPS 2014

Minimax objective function:
min max |Eqgnp,,, 108 Doy () + Eonp(e) 108(1 — Do, (G, (2)))]

0, 0a

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

néax []Ea:rvpdam log Dy, () + E,np(2) log(1 — Dy, (G()g (Z)))] dominated by region
d where sample is
already go\od

2. Gradient descent on generator

r%in Esz(z) log(1 — Dod(Geg (2)))

4

When sample is Iikelyz»
fake, want to learn |

In practice, optimizing this generator objective from it to improve /X _
does not work well! generator. But |
gradient in this region-

|S relatlvely ﬂat' oo 0.2 0.4 o 0.6 0.8 10

Slide Credit: Fei-Fei Li, Justin Johnson, and Serena Yeung, cs231n 2017 61

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Ewrvpdam log Dy, () + Eznp(z) log(1 — De, (Go, (Z)))]

0, 64
Aside: Jointly training two

. networks is challenging,
Alternate between: can be unstable. Choosing

1. Gradient ascent on discriminator objectives with better loss
max {Ex,\,pdam log ng (33) +]Ezrvp(z) log(l — Ded(Geg (z)))] landscapes helps training,

6,4 is an active area of
research.

— log(1 -D(G(2)))
— —logD(G(2))

2. Instead: Gradient ascent on generator, different
objective

maxE., .. log(Dg,(Gy (2 This is unstable with
0, p(2) 108(Doa(Gig,)))Iarge variance of gradient!!!

RN w s

Instead of minimizing likelihood of discriminator being correct, now High gradignt signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

-3}

L
0.0 0.2

[‘ow.gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, and Serena Yeung, cs231n 2017 62

Problems of GAN

The minmax training of GAN doesn’t necessarily converge in practice:

If we have a perfect discriminator in the beginning, the gradient of the loss function
with respect to generator parameters is close to zero and the learning is very slow

If we have a very bad discriminator, we don’t get much useful feedback from the
discriminator.

Training can be unstable.

Mode collapse: the generator only generates a subset of training data distribution
modes to fool the discriminator and fails to explore other modes.

63

Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in

converting the shape of a data distribution q to the shape of a data distribution p. It is also
called Optimal Transnort Cost or FEarth Mover Distance.

3
2 6 s
1|45 1 5 |
el 7 8 9 10
3 (6+6+6+6+2x9=42) 7:8:i9:i10
1iais| 1]4a|5]2 Y, 2]oi1io0io
1 2 3 F 8 @110 sloroizio
Fee (6+6+6+8+9+7=42)
3 7:8i9i10
Lo 6 2|3 11 1:i0: 141
g ; 1] 4 6
11045 :; 5 Y, 2|oi1ioio
1 2 3 7 8 9 10 3 o0ioi1in

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aai1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution q to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

1+1=2)
1 1 P2 2
’ >
3 4 6 7
(3+3=6)
2 1 r 2 1
: >
3 4 6 7

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aai1b490

65

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in

converting the shape of a data distribution q to the shape of a data distribution p. It is also
called Ontimal Transnort Cost or Earth Mover ™ ~*~---

3 e — | W(Pra]P)g) — inf]E(:v,y)wfy[”33 - y”] y
2 6 PP H A 6 ! 'Yen(lpr,lpg)
1]4]s P 5 .. C . :
— ' I1(Pr, Pg) denotes the set of all joint distributions y(x, y) whose marginals are
1 2 3 7 8 9 10
A T respectively Pr and Pg.
3 (6+6+6+6+2x9=42) 7igigiio
2 | L6 i 6|3 11i0io0:2
11415 14|52 Y. i2|loir1ioio
1 2 3 7 8 9 10 3|l oioi2io
N 6+6+6+8+9+7=42)
L3 7i8i9i10
2 6 2|3 11i0i1:1
1 4 5 1 4 5 6 ’YZ 2 0 1 0 0
1 2 3 7 8 9 10 3l oioi1i1

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aai1b490 66

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Comparing Wasserstein Distance with KLD and JSD

Vix,y) € P,x=0andy ~ U(0, 1)

V(x,y) €Q,x=60,0<0<1landy~ U(0,1) When § # 0:

DuPIQ)= Y, 1-log =+

1.0 - x=0,y~U(0,1) L

— P 1

—_— O Dx(@IP)= Y, 1-log g =+oo
0.8 1 x=0,y~U(0,1)

Dys(P, Q) 1(2 110g1+ D 110g1)10g2
s\,) = = : ¥ : =) B
0-61 2 x=0,y~U(0,1) 172 x=0,y~U(0,1) 172
” W, Q) = 6|
0.4
But when 6 = 0, two distributions are fully overlapped:
0.2 4
Dy (P||Q) = Dkr(Q|IP) = Dys(P,Q) = 0

0.0 WP,0)=0=|6|

0.0 0.2 0.4 0.6 0.8 1.0

Picture Credit:https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

67

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

Wasserstein GAN (WGAN) Minimizing Wasserstein Distance
between p,and p,

Using the Kantorovich-Rubinstein duality, we can simplify the calculation tc

W (P, Po) = Sup. B [f(2)] = Eonry [(2)]

f(21) = f(@2)] < |21 — 22].

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.

68

GAN

WGAN

WGAN vs. GAN

Discriminator/Critic Generator

Vﬂd%i[hw(m“))“og (1-p(a(=)))] Vo, > log (D (6 (=9)))
g[f(z®) — f(¢ (2®))] mej f(c (z9))

-t
m

In WGAN, we have a critic with a scalar output without log

69

WGAN vs. GAN

1.0 - - - - - T T
— Density of real

08l — Density of fake |
—— GAN Discriminator
—— WGAN Critic

0.6 | 4

—0.2 L Vanishing gradients 1
/’/ H
_— in regular GAN
—0.4l— | 1 1 . . 1 1
-8 -6 ") 0 2 4 6 8

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.

Training Algorithm of WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, Ncritic = O-

Require: : «, the learning rate. c¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.
1: while 6 has not converged do
for t =0,..., Neritic do
Sample {z(¥}™ | ~ P, a batch from the real data.
Sample {z()}™, ~ p(z) a batch of prior samples.
Juw < Vu [% > e fu(2®) — i D i fw(gg(z(i)))]
w < w + a - RMSProp(w, g)
w <« clip(w, —¢, ¢)
end for
Sample {z(¥}™, ~ p(z) a batch of prior samples.
9o — Vo S Fulge(z9))
11: 6 < 0 — o - RMSProp(6, gs)
12: end while 71

—_
@

The Latest GAN Architecture - Style GAN2

https://arxiv.org/pdf/1912.04958.pdf

72

Summary of Topics Discussed

VAE

GAN

Adversarial Domain Adaptation, CycleGAN
Text2Video Synthesis

Wasserstein Distance

73

The End

Thank Youl!

