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Abstract
We introduce approaches to simplifying neural
networks and enhancing their interpretability us-
ing activation-based neuron tuning and personal-
ized weight matrix products. Inspired by the evo-
lutionary principle of the survival of the fittest, we
gradually remove neurons with little to no learn-
ing efficacy during training and hypothesize that
their absence renders opaque models more inter-
pretable. Experimental results pertaining to can-
cer and diabetes treatment appear to favor our hy-
pothesis and generate more biomedically salient
results. Our approaches also allow for interpreta-
tions at the sample level, a feature of particular
importance in relation to personalized medicine.

1. Introduction
Wide applicability of neural network models is contingent
on our understanding of the underlying dynamics leading
to their exemplary performance. In fields like biomedicine,
interpretability becomes a necessary bridge to establish trust
between AI and medical scientists (Ching et al., 2018). Our
goal in this paper is two-fold. First, we aim to understand
how neural networks learn. Second, we aim to expand
biomedical knowledge by scrutinizing the high number of
parameters learned during training — primarily in the form
of weight matrices. To these ends, we introduce two com-
plementary approaches: Activation-based Neuron Tuning
(ANT) to discard neurons during training, and Personalized
Weight Product (PWP) to interpret the resulting network us-
ing products of data and weight paths. While each of ANT
and PWP can be deployed as a standalone approach that
serve different yet related tasks, we connect them through
a bio-inspired hypothesis on the learning process of neural
networks that renders ANT a favorable precursor to PWP.
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2. Activation-based Neural Tuning
2.1. Hypothesis

Activation-based neural tuning is inspired from biological
phenomena where only a subset of entities participating in a
process endure or contribute to the final outcome. Whether
it is a key cellular pathway whose disruption leads to cancer
after inactivating only a few genes, or the brain responding
to external stimuli using a small fraction of its neurons, pri-
oritizing biomarkers according to their contribution intensity
is a recurring theme in biology. Applicability of this hy-
pothesis on neural network training is centered around two
ideas inherent to the training process. The first pertains to
the stochasticity of training: networks with different weight
initializations yield different learned weights but compara-
ble overall predictive performance, suggesting that neural
networks can take multiple “learning routes” to identify
patterns in data. The second relates to the comparable pre-
dictive performance of networks with different architectures.
In supervised learning tasks, network size often reaches a
saturation limit where adding neurons does not improve
performance.

Our tuning approach trims a network during training to (1)
keep only enough neurons to learn target patterns and (2) re-
strict the “learning route” to untrimmed neurons considered
significant by the virtue of receiving concentrated learning
flow during training. We hypothesize that discarded neurons
could be inducing noise on the learning process. By the
end of training, remaining neurons are expected to resemble
the “learning bottleneck” of the network, i.e. a small set
of neurons that suffice for effective and less noisy learning.
This perspective resembles an indirect relation to the “infor-
mation bottleneck” (Tishby & Zaslavsky, 2015), and from
an evolutionary biology angle, it can be seen as a model of
Darwin’s survival of the fittest. The measure of fitness is
based on the level of a neuron’s engagement during train-
ing measured through an activation function-specific proxy
described below.

2.2. Neuron Selection Criteria

For weight updates to effectively navigate the loss func-
tion’s (L) error surface, gradient magnitudes must take val-
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ues higher than 0 or ε (i.e. small values pertaining to the
saturation problem). To turn off neurons during training,
our ANT selection criteria measure the properties of neu-
rons’ input distributions, i.e. Z’s, to rank them according
to the magnitude of weight updates. Neurons with inputs
concentrated around activation function-specific favorable
intervals are prioritized, while others distant from a concen-
trated target distribution (Φtarget) are permanently turned
off. The number of neurons to be removed, n, and number
of epochs at which neurons are regularly turned off, k, are
both pre-defined parameters that indicate the total number
of neurons eliminated from each layer by the end of training,
nk.

2.3. Calculus Interpretation

In calculus terms, we define neuron activity in terms of its
gradients’ updates during optimization. By virtue of the
chain rule used to calculate gradient values during each
backward pass, overall gradients are affected by derivatives
of neuron activation functions with respect to their inputs
(i.e. middle term of eq. (1)).
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whereL is the loss function, l and l−1 are subsequent layers,
i is the source neuron index in layer l−1, j is the destination
neuron index in layer l, al is the activation function in l, alj
= al(zlj), zlj = wl−1

j al−1 + bl, w
j
l−1 is the weight vector

incoming from l − 1 to neuron j in l, and bl is the bias
term of layer l. We explain next how we accordingly select
neurons to turn off based on input distributions to activation
functions. We focus on the cases of ReLU and sigmoid
functions and describe a rationale that generalizes to other
functions for neuron selection.

2.4. Φtarget for Sigmoid and ReLU neurons

Derivative of the sigmoid function σ’(x) ∈ ]0, 0.25], with
its highest values at x ∈ [−3,+3] (Figure 1A). To encour-
age active updates in a layer’s neurons, we select the target
distribution for sigmoid to be ΦSigmoid

target ∼ N (0, 1.5), a
distribution with high peaked-ness centered around µ = 0
and ∈ [-3, +3] (Figure 1C). Neurons receiving input dis-
tributions (Z) close to ΦSigmoid

target encourage non-zero and
relatively large sigmoid gradient values (� ε) resulting ac-
tive overall neuron gradient updates during backpropagation.
In contrast, input distributions furthest from ΦSigmoid

target lead
to recurring 0 and ε-like gradients impeding progress during
optimization. ANT uses Kullback–Leibler to measure the
difference between the histograms of both distributions: Φ,
and Z over validation data points.

A similar rationale is adopted to select Φtarget for ReLU,
where ΦReLU

target encourages positive, larger derivatives and
discourages 0-valued ones. Generally, the gradient of ReLU
is either 0 or 1 depending on the input value passed during
the forward pass: positive values lead to a derivative of 1,
while negative values lead to a derivative of 0 (Figure 1B).
We select ΦReLU

target to be an “inverted power law” distribution
representing a considerably higher density shifted towards
positive values (Fig. 1D). This same goal can drive the se-
lection of target distributions that favor high activity regions
of other activation functions.

Figure 1. Sigmoid and ReLU specifications with respect to the tun-
ing algorithm. Curve and gradient of (A) Sigmoid and (B) ReLU
and target distribution for (C) Sigmoid and (D) ReLU neurons.

2.5. Algorithm

We lay out the steps of ANT in Algorithm 1.

3. Personalized Weight Product
The idea of leveraging weight matrix products to inter-
pret trained neural networks was first introduced long be-
fore deep learning garnered its recent popularity, namely
with Garson’s algorithm (Garson, 1991). Recent cancer ge-
nomics research highlighted the high heterogeneity of can-
cer subtypes, emphasizing the need for patient- or subgroup-
level treatments, a trend that falls under a set of practices
that became known as “personalized medicine.” (Campbell
et al., 2020; Pon & Marra, 2015) Driven by this and other
recent trends in biomedicine, we introduce PWP with an
ability to estimate the contribution of input features to pre-
diction on batch, subset, or individual sample levels. We
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Algorithm 1 Activation-based Neuron Tuning (ANT)
Input: Data D, Network Net, Weight matrices W , Tar-
get layers T , tuning step k and number of tuned neurons
n
for epoch = 1 to E epochs do

SGD(Net,D,W,L)
if epoch % k = 0 then

for layer l ∈ T do
Sl = DKL(Zl

i‖Φl
target)∀ neuron i ∈ l

N l
tuned = N l

tuned ∪ argmax
1..n

Sl

Remove neurons ∈ N l
tuned from the network

end for
end if

end for

also leverage biomedical domain knowledge to incorporate
the signs of the weights during matrix multiplication to
mimic the important directionality of interactions between
genes or clinical phenotypes pertaining to disease. Unlike
Garson’s algorithm which uses the absolute values of every
weight matrix, we use absolute values only in the final step
after signed matrices take part in iterative multiplication.

Let W be the set of weight matrices learned during network
training. PWP’s iterative weight products are calculated as
follows:

PWPI = X . |W1 . W2 ... WNlayers
|, (2)

where I is the set of inputs and X is the dataset based on
which input contributions are to be calculated.

4. Results
We evaluate ANT and PWP on MNIST and two biomedical
datasets to predict drug response in acute myeloid leukemia
(AML) (Tyner et al., 2018) and hospital readmission of dia-
betes patients (Strack et al., 2014; Goudjerkan & Jayabalan,
2019). The first set of experiments investigates the possibil-
ity of deteriorating performance caused by neuron removal
by ANT. The seconds studies the performance of PWP as
a standalone approach and combined with ANT. Reported
results are aggregated over 10 reproducible runs.

4.1. One-Layer and Two-Layer Tuning

While the predictive performance of a trained network is
not the central goal of ANT, this performance must not
be sacrificed in exchange of higher levels of interpretabil-
ity. To this end, we compare ANT-tuned networks with
baseline models (i.e. without neuron tuning). Each base-
line model constitutes 3 layers with its hyperparameters
selected using hyperopt (Bergstra et al., 2013). We note

that a slightly higher performance has been achieved on
the MNIST dataset using CNNs, but we focus on the fully-
connected neural nets, the target network type of our current
approaches.

Results from all predictive tasks demonstrate that ANT
maintains high AUC, accuracy, and precision across all
three datasets while turning off up to 70% of the first hid-
den layer’s neurons (Figure 2). Similar results are obtained
when tuning two hidden layers while shrinking the model
up to 50-80% (Appendix).

Figure 2. ANT single-layer tuning results. High predictive perfor-
mance is maintained while triming up to 75% first hidden layer
neurons.

4.2. Biomedical Interpretation: Cancer Genomics and
Clinical Diabetes

In the first task, we perform biological enrichment analy-
sis on the top 100 genes prioritized by PWP vs Garson’s
algorithm out of >26,000 input features encompassing gene
expression and genomic variation profiles. Enrichment re-
sults returned by the DAVID databsae (Huang et al., 2007)
demonstrate that PWP identifies significantly more biolog-
ical entities associated with AML than Garson’s: “AML”
term count, number of associated publications, and statis-
tically significant (Benjamini p-value < 0.05) chart and
clustering annotation records. More interestingly, PWP ap-
plied on ANT-tuned models (labeled PWP-ANT) achieves
better performance than PWP alone. PWP-ANT gene set
annotation is also the only one to include AML as a directly
reported GAD disease. A similar pattern is observed in
the diabetes patient readmission task. PWP-ANT’s top 5
features included 3 of the gold standard clinical features
curated based on expansive literature review, compared to
two features using PWP alone and only one feature by Gar-
son’s algorithm (Figure 3(B)). These results highlight the
significance of using signed network matrices to capture in-
teractions between features. We also note that PWP variants
achieved significantly better results compared to randomly
selected genes as another baseline in the AML task.
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Figure 3. AML and Diabetes Results. (A) PWP-ANT’s top gene
list uncovers more biomedical annotations pertaining to AML
than that of PWP alone or Garson’s algorithm. (B) PWP-ANT
prioritizes more clinically important features than both approaches.

4.3. Personalized Interpretations

A severe limitation of the Garson’s algorithm’s weight ma-
trix product approach is its estimation of a singular value for
each feature’s contribution to the output. The data-driven
nature of PWP allows it to identify prioritized features on a
sample- or subset-levels of interest. To examine the potential
of PWP-ANT as an attribution method, we run PWP-ANT
on MNIST with three input datasets: (i) all images of all
digits, (ii) all images of each digit separately, and (iii) only
two images of the same digit. Prioritized pixels varied de-
pending on the subset being considered. On dataset (i),
PWP-ANT highlights pixels pertaining to specific features
of multiple digits included the set. Interestingly, these pixels
are located in discriminative locations that allow for the dis-
tinction between similar-looking digits such as the edges in
the center of 3 and 8 or 0 and 9 (white rectangles of Figure
4(A)). On subset (ii), prioritized pixels become more spe-
cific to the target digit. Each row in Figure 4(B) highlights
the same pixels prioritized to cover discriminative features
of the target digit (0, 1 or 7 shown as examples). Selected
pixels might also demonstrate locations where the digit of
interest uniquely has no pixels. For instance, being the only
digit without a single pixel in the center, these pixels were
highlighted for digit 0 (center top image of 4(B), orange
rectangle). Prioritized pixels become even more specific for
subset (iii) as shown in 4(C). When only two images of the
same digit are provided to the method, PWP-ANT uncovers
the specific edge pixels of these particular images. We note
that no retraining of any baseline or ANT-tuned network was
required in these or other experiments, and the specificity of
prioritized features is based solely on data provided to PWP
as described in Eq. 2 with minimal computational overhead.

5. Future Directions
We introduce efficient approaches to simplifying neural
networks and enhancing our understanding of learned pa-
rameter values. Driven by biomedical domain knowledge,

Figure 4. Representative MNIST results. Highlighted pixels priori-
tized by PWP-ANT capture the important discriminative features
used to distinguish digits in the input in each of three scenarios:
(A) all data including all digits, (B) all data of for a single digit,
and (C) two data points of the same digit.

our results highlight the importance of learned weight signs
and the efficacy of adopting a parsimonious perspective in
training yielding smaller networks. While we demonstrate
the improvement our method introduces to its closest coun-
terpart (i.e. weight-based Garson’s algorithm), experiments
can be expanded in relation to related work by: (i) com-
paring ANT’s tuning to other methods including the lottery
ticket theory (Frankle & Carbin, 2018) and the work in
(Morcos et al., 2018), (ii) extending PWP to detect feature
interactions in line with weight-based Garson’s algorithm-
inspired work in (Tsang et al., 2018), or (iii) elaborating on
the attributive side of PWP in comparison with other attri-
bution methods (Springenberg et al., 2015; Shrikumar et al.,
2017; Weinberger et al., 2020) that have made significant
recent advances with potential opportunities for additional
improvement.
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6. Appendix
6.1. ANT Two-Layer Tuning Results

Figure 5. Two-layer tuning results. High predictive performance
is maintained up to 50-80% tuning of the two hidden layers on all
datasets, higher rate for selected ones.

6.2. Subfigure Credit

Subfigures (A) and (B) of Figure 1 on the curve and deriva-
tive values of Sigmoid and ReLU functions are adopted
from part of Figure 3-5 in “Ranking to Learn and Learning
to Rank: On the Role of Ranking in Pattern Recognition
Applications” by Giorgio Roffo, arXiv:1706.05933.


