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Supervised Deep Learning 
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LeCun, Bengio, and Hinton, Deep Learning. Nature 2015  



Supervised Deep Learning 
Supervised Machine Learning:  
Feature Representation + Classification/
Regression Loss + Optimization (on training 
data)   
à Prediction (on test data) 
(hyper-parameter tuning with n-fold CV, n=5) 
 
Supervised Deep Learning: 
Input features and adaptively learned 
features by hidden layers + Mean Squared 
Error/Hinge Loss/Cross-Entropy Loss + SGD 
with Momentum (on large-scale training data) 
à Good Prediction Performance (on test 
data) 
(hyper-parameter tuning on a validation set) 
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Fully Connected Layer 
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Activation Functions 
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DNN with sigmoid and tanh activation functions has serious vanishing 
gradient and saturation issue 
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ReLU Activation Function  

Avoid vanishing gradient and less computationally expensive than sigmoid and 
tanh 
 
But it might cause dead neuron and the activity is not bounded above 
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Softmax Activation Function 
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Often used on top of a fully connected layer, which transforms an activity vector z 
into probabilities of classifying x into K classes 

∂yi
∂zi

= yi (1− yi )

The output units in a softmax group 
use a non-local non-linearity: 

softmax 
group zi

yi

this is called the “logit” 

yi =
ezi

ezj
j∈group
∑



Loss Function: Cross-Entropy Loss 
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p is the positive class of i. For categorical classification, using the cross-entropy 
loss on top of a Softmax layer is the same as maximizing the log-probability of 

the correct class based on multinomial logistic regression 

C = − t j log
j
∑ yj

The right cost function is the negative 
log probability of the target class. 

C has a very big gradient when the 
target value is 1 and the output is 
almost zero. 
A value of 0.001 is much better than 
0.0000001 

The steepness of dC/dy exactly balances 
the flatness of dy/dz 
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Loss Function: Mean Squared Error 
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MSE is a very bad cost function for softmax output units. 
Why? 



Loss Function: Hinge Loss 
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The score for the wrong class must be 1 margin smaller 
than the score for the ground-truth class;  

Otherwise, there is a loss incurred 



Deep Feedforward Neural Network with Sigmoid Hidden Units 
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 Backpropagation with a Computational Graph 
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Train a Deep Neural Network with SGD 

Split our training dataset into N mini-batches with batch size b 
For Iteration = 1, …, Num_Max_Iterations 
       randomly choose a mini-batch Di 
 

 

(you can also have two loops: outer loop over iterations, inner loop over mini-batches) 
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DNN works much worse than a shallow CNN even 
on MNIST! 

 
~1.0% vs. ~0.60% 

 
Why? 
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Hubel and Wiesel Experiment 
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https://www.youtube.com/watch?v=OGxVfKJqX5E 
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Deep learners should combine their 
knowledge with large-scale data to 
grow programs, encode essential 
knowledge into network structures, 
and l e t backp ropaga t ion and 
stochastic gradient descent do the 
heavy lifting.  

Message from Last Lecture 



Convolutional Neural Network: LeNet (1998) 
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LeCun et al., 1998 



1D Convolution with W =5, F = 3, Stride = 1, 
Padding = 1 
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http://cs231n.github.io/convolutional-networks/ 

Output Size =  



1D Convolution over Sentences 

20 
Yoon Kim, Convolutional Neural Networks for Sentence 

Classification. EMNLP 2014 



2D Convolutions 

21 https://github.com/vdumoulin/conv_arithmetic 



2D Convolution Animations 
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https://github.com/vdumoulin/conv_arithmetic 
 

See the animation at  



2D 3x3 Convolution Applied to RGB Input of Size 5x5 

23 Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html 



2D Convolutions in Numbers 
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http://cs231n.github.io/convolutional-networks/ 
 



3D Convolution 

25 Picture credit: https://thomelane.github.io/convolutions/3DConv.html 



Max Pooling 

Average Pooling is also widely used, especially in NLP 
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http://cs231n.github.io/convolutional-networks/ 



Data Augmentation 

27 Picture credit: https://nanonets.com/blog/data-augmentation-how-to-use-
deep-learning-when-you-have-limited-data-part-2/ 

Random erasing, horizontal flipping, rotation, scaling (with cropping), cropping, contrast, color  



Mixup 
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Picture credit: https://www.dlology.com/blog/how-to-do-mixup-
training-from-image-files-in-keras/ 

Zhang et al., Mixup: beyond empirical risk minimization. 
ICLR 2018. 



Case Study: AlexNet 
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NIPS 2012 



AlexNet Network Structure 
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Pay attention to the output Size and the number of parameters 



Training AlexNet using SGD with Momentum and Weight 
Decay 
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AlexNet with ReLU Converges Much Faster 
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AlexNet vs. VGG 

33 
Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019   



VGG 

34 
Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2017   



The deeper, the better? 
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He et al., CVPR 2015 



Learning Residual Feature Maps is Easier 
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He et al., Deep Residual Learning for Image Recognition. CVPR 2015 



Learning Residual is Easier 
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He et al., Deep Residual Learning for Image Recognition. CVPR 2015 



VGG  
vs.  

ResNet 
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He et al., CVPR 2015 



ResNet Details 
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Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019   40 

NEC Model 



Conv2d in PyTorch 
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Demonstration of training a simple CNN Classifier on 
CIFAR10 using PyTorch in Jupyter Notebook 

42 



Implement Your Own Forward and Backforward in PyTorch 
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Implement Your Own Forward and Backforward in PyTorch 
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Implement Your Own Forward and Backforward in PyTorch 

45 



The Remaining Slides Are Optional 
Materials for Your Interest 
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Wider ResNet 
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Wider ResNet 
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What can we do with a pre-trained Deep CNN on ImageNet? 
●  Simple Transfer learning 

○  We transfer our learned model on the ImageNet to a different domain, for e.g., fine-grained flower 
category classification 

○  It only works when the transferred domain is closely related to the source domain of ImageNet 

●  Few-shot learning 

○  In this task, for each class, we only have a few labeled training examples 

○  We can use the learned feature embeddings or their (weighted) mean as prototype(s) 

●  Zero-shot learning 

○  In this task, we don’t have any training example for some classes, but we have semantic descriptions 
about them 

○  A simple idea: Output a 1000-class probabilities of a test image and use a convex combination of the 
semantic descriptions of the top k known classes to construct semantic features of the test image 
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Zero-shot Learning Example 
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https://arxiv.org/pdf/1312.5650.pdf 
 



What do CNN (AlexNet-like) filters look like? 
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Zeiler and Fergus, 2013: 
Visualizing and Understanding Convolutional Networks  

 

An important convolutional operation called Transposed Convolution 
was invented in this paper, which will be discussed in Lec 5. 
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Layer 4 Layer 5 

Layer 2 Layer 3 
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Deep Dream 
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Image credit and source: 
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html 

 



Deep Dream 
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Image credit and source: 
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html 

 



Deep Dream Python Notebook Code 
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https://github.com/google/deepdream/blob/master/dream.ipynb 
 
 



Style Transfer 
●  We can also utilize a pre-trained deep CNN classifier such as VGG to 

calculate the feature maps in some specified layers for input images 

●  By matching the content feature maps of a generated image to an original 
input image and matching the Gram matrix of feature maps of the generated 
image to that of a style image, we can perform backpropagation to the pixel 
space to generate an artistic image similar to the input image 
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Gatys et al. 2015:  A Neural Algorithm of Artistic Style 
  

https://arxiv.org/pdf/1508.06576.pdf 
 



Style Transfer 
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Style Transfer Method 
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Style Transfer 
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Style Transfer Examples with a Fast Implementation 
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https://youtu.be/Khuj4ASldmU?t=6 



Summary of Topics Discussed 
●  Activation Functions 
●  Loss Functions 
●  Training deep feedforward neural networks with backpropagation and 

mini-batch SGD 
●  Convolution and pooling operations in CNN 
●  Network architectures such as AlexNet, VGG, ResNet, and 

WideResNet 
●  Applications of supervised pre-trained CNNs 
●  Visualization of pre-trained CNN filters and receptive fields 
●  Style transfer 
●  Geoff Hinton, “Never stop coding.” Great discoveries are from 

practice. 
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The End 
Next lecture: 
 
 

Optimization, Regularization, Understanding 
Batch Normalization, and Robustness of 

Deep Neural Networks 
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