Biomed. Data Science: Basic Multi-omic Analyses

Mark Gerstein, Yale University gersteinlab.org/courses/452 (last edit in spring '20)

Non-coding Annotations: Overview

Features are often present on multiple "scale" (eg elements and connected networks)

Sequence features, incl. Conservation

Functional Genomics Chip-seq (Epigenome & seq. specific TF) and ncRNA & un-annotated transcription

Differential expression analysis

Genome Biology, 2010 11:R106

Differential expression analysis: Count-based

- 1. DESeq -- based on negative binomial distribution
- edgeR -- use an overdispersed Poisson model
- baySeq -- use an empirical Bayes approach
- 4. TSPM -- use a twostage poisson model

Anders and Huber Genome Biology 2010, 11:R106 http://genomebiology.com/2010/11/10/R106

METHOD

Differential expression analysis for sequence count data

Simon Anders^{*}, Wolfgang Huber

BIOINFORMATICS APPLICATIONS NOTE

Vol. 26 no. 1 2010, pages 139-140 doi:10.1093/bioinformatics/btp616

Open Access

Gene expression

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

Mark D. Robinson^{1,2,*,†}, Davis J. McCarthy^{2,†} and Gordon K. Smyth²

¹Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010 and ²Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia

Hardcastle and Kelly BMC Bioinformatics 2010, 11:422 http://www.biomedcentral.com/1471-2105/11/422

Open Access

RESEARCH ARTICLE

baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data

Thomas J Hardcastle*, Krystyna A Kelly

Statistical Applications in Genetics and Molecular Biology

Volume 10, Issue 1 2011 Article 26

A Two-Stage Poisson Model for Testing RNA-Seq Data

Paul L. Auer, Fred Hutchinson Cancer Research Center Rebecca W. Doerge, Purdue University

chip-seq

Information from Chip-seq

[Science 330: 1775 + ENCODE Data Sources TFs & Control: Yale HMs: UW & Broad]

Summarizing the Signal: "Traditional" ChipSeq Peak Calling

[Rozowsky et al. ('09) Nat Biotech]

Data Flow: Chip-seq expts. to co-associating peaks

Data Flow: peaks to proximal & distal networks

The irreproducible discovery rate (IDR)

- Unified approach to measure the reproducibility of findings identified from replicate high-throughput experiments.
- <u>Idea</u>: call peaks with low cutoff and classify peaks as reproducible or not (bivariate rank distributions) based on overlap of ranked peaks (consistency)

Multiscale Analysis, Minima/Maxima based Coarse Segmentation

Multiscale Decomposition

13 - Lectures.

[Harmanci et al, Genome Biol. ('14)]

Multiscale Decomposition

ASB/ASE & equal by a second se

Allele-specific binding and expression

Genomic variants affecting allele-specific behavior e.g. allele-specific binding (ASB)

e.g. allele-specific expression (ASE)

Inferring Allele Specific Binding/Expression using Sequence Reads

RNA/ChIP-Seq Reads ACTTTGATAGCGTCAATG CTTTGATAGCGTCAATGC ...AACGC... **CTTTGATAGCGTCAACGC** TF **TTGACAGCGTCAATGCAC** TGATAGCGTCAATGCACG **ATAGCGTCAATGCACGTC** TAGCGTCAATGCACGTCG CGTCAACGCACGTCGGGA **GTCAATGCACGTCGAGAG** ...AATGC... CAATGCACGTCGGGAGTT AATGCACGTCGGGAGTTG TGCACGTTGGGAGTTGGC Haplotypes with a **Heterozygous Polymorphism**

10 x T 2 x C

Interplay of the annotation and individual sequence variants

Expression quantitative trait

Cis-eQTL

SNP X has an effect on local Gene A

eQTL Mapping Using RNA-Seq Data

- eQTLs are genomic loci that contribute to variation in mRNA expression levels
- eQTLs provide insights on transcription regulation, and the molecular basis of phenotypic outcomes
- eQTL mapping can be done with RNA-Seq data

Hi-C

3D organization of genome

image credit: Iyer et al. BMC Biophysics 2011

Hi-C contact map

Hi-C contact map and Genome architecture

Topologically Associating Domain

Cell 2015, 161:1012-1025

Modularity

Network modularity

Network modularity

TAD Finding

Identifying TADs in multiple resolutions

Modularity maximization

$$Q = \frac{1}{2m} \sum_{i,j} \left(W_{ij} - \frac{k_i k_j}{2m} \right) \delta_{\sigma_i \sigma_j}$$

network	contact map
node	chromosome bin
edge	Hi-C contact
# of connections	coverage
module	domain

schematic adapted from ref. [2]

[Yan et al., PLOS Comp. Bio. (in revision, '17); bioRxiv 097345]

Identifying TADs in multiple resolutions

[Yan et al., PLOS Comp. Bio. (in revision, '17); bioRxiv 097345]

Identifying TADs in multiple resolutions

