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STARRPeaker: Uniform processing and accurate identification of
STARR-seq active regions

Background: High-throughput reporter assays, such as 
self-transcribing active regulatory region sequencing 
(STARR-seq), allow for unbiased and quantitative assess-
ment of enhancers at a genome-wide level. Recent advanc-
es in STARR-seq technology have employed progressively 
more complex genomic libraries and increased sequencing 
depths, to assay larger sized regions, up to the entire human 
genome. These advances necessitate a reliable processing 
pipeline and peak-calling algorithm.
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Methods and Results: Most STARR-seq studies have 
relied on chromatin immunoprecipitation sequencing 
(ChIP-seq) processing pipeline to identify peaks. However, 
there are key differences in STARR-seq versus ChIP-seq 
data: STARR-seq uses transcribed RNA to measure en-
hancer activity, making determining the basal transcription 
rate important. Furthermore, STARR-seq output coverage is 
non-uniform, overdispersed (Fig 1), and often confounded by 
sequencing biases such as GC content and mappability. 
Moreover, here, we observed a clear correlation between 
RNA thermodynamic stability and STARR-seq readout, sug-
gesting that STARR-seq might be sensitive to RNA second-
ary structure and stability (Fig 2). Considering these findings, 
we developed STARRPeaker: a negative binomial regres-
sion framework for uniformly processing STARR-seq data. 
We applied STARRPeaker to two whole human genome 
STARR-seq experiments; HepG2 and K562.

Conclusion: Our method identifies highly reproducible and epigenetically active enhancers across replicates (Fig 3). Moreover, 
STARRPeaker outperforms other peak callers in terms of identifying known enhancers. Thus, our framework optimized for process-
ing STARR-seq data accurately characterizes cell-type-specific enhancers, while addressing potential confounders.

Figure 1. Modeling of STARR-seq fragment coverage

Figure 2. Confounding factors in the STARR-seq assay
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Figure 3. Enrichment of epigenetic signals around STARRPeaker peaks

Available @ github.com/gersteinlab/starrpeaker


