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Cancer Genomics:

Evaluating the Overall Impact 
of Passenger Mutations

Mark Gerstein
Yale

Slides freely downloadable from Lectures.GersteinLab.org & 
“tweetable” (via @MarkGerstein). 

No Conflicts for this Talk. See last slide for more info.
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What if matching 
a cancer cure to 
our genetic code 
was just as easy

Much Interest 
in Precision 
Oncology

• Analysis of the exact 
somatic mutations in a 
individual

• Highlighting key 
mutations

• Targeting treatment

https://obamawhitehouse.archives.g
ov/blog/2016/02/25/precision-
medicine-health-care-tailored-you
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few 
high-impact variants are associated with disease 

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,  
But one wants to find key ”functional” variant amongst many in LD 

CAN YOU FIND THE PANDA?
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few 
high-impact variants are associated with disease 

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,  
But one wants to find key ”functional” variant amongst many in LD 

Thus: Need to find & prioritize high impact variants. 
Particularly hard for non-coding regions.

CAN YOU FIND THE PANDA?
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Drivers
directly confer a selective growth advantage to 
the tumor cell.

A typical tumor contains 2-8 drivers.

identified through signals of positive selection.

Existing cohorts of ~100s give enough power 
to identify

Passengers
Conceptually, a passenger mutation has no 
direct or indirect effect on tumor progression.

There are 1000s of passengers in a typical 
cancer genome.

Canonical model of drivers & passengers in cancer

[Vogelstein Science 2013. 339:1546]
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ONTARIO INSTITUTE FOR CANCER RESEARCH 

  Goals: 
  Understand what’s going on in the 95% of the cancer 

genome that isn’t protein-coding. 
  Non-coding RNAs & regulatory elements 
  Genomic structural changes 
  Mutation signatures 
  Pathogen (viral) insertion 

  Plan: 
  Jointly analyze 2600 whole genome tumor/normal 

pairs from ICGC. 
  >580 researchers 
  >130 research projects 
  16 thematic working groups 

PCAWG : most comprehensive resource for 
cancer whole genome analysis

Project Goals:

• To understand role of non-coding 
regions of cancer genomes in 
disease progression.

• Union of TCGA-ICGC efforts 

• Jointly analyzing ~2800 whole 
genome tumor/normal pairs
Ø > 580 researchers
Ø 16 thematic working groups
Ø ~30M total somatic SNVs

Adapted from Campbell et. al., bioRxiv (’17)
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A case study: pRCC
• Kidney cancer lifetime risk of 

1.6% & the papillary type (pRCC) 
counts for ~10% of all cases

• TCGA  sequenced 161 exomes
& classified them into subtypes

• 35 WGS of TN pairs

[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building 
Background Mutation Models, Analyzing Tumor Evolution &  Evaluating the Overall Impact of Passenger Mutations

• BMR: LARVA/MOAT 
• Uses parametric beta-

binomial model, explicitly 
modeling genomic 
covariates

• Non-parametric shuffles. 
Useful when explicit 
covariates not available.

• Tumor Evolution: 
Classification + 
Driver identification
• Intro: Mutational timing & 

tree topology classifies 
pRCC subtypes

• Identifying drivers from  
perturbations in VAF 
spectra from a single 
tumor (using many 
hitchhiking mutations to 
gain statistical support) 

• Intro
• PMI & Variant Prioritization; 

driver-passenger model 
• Data source: PCAWG 

comprehensive WGS on >2.5K 
+ focus on 35 pRCC WGS

• ENCODEC Annotation
• ENCODE cancer  resource, 

with TF & RBP networks
• Cell-space view of TN pairs
• FunSeq variant impact 

measurement integrates
conservation & network 
centrality

• Network Rewiring
• Highlights regulators that 

change  targets greatly 
• LDA approach (from text-

mining) finds those that greatly 
change their gene communities

• Overall Impact of Putative 
Passengers
• Not just high & low impact dichotomy
• How the fraction of high-impact SNVs scales & 

relates to survival
• Differences betw. Impact of early & late 

passenger mutations (eg in TSGs & oncogenes)

• Differential Impact of Signatures
• Diff. burdening of TF sub-networks naturally 

results from mutational spectra & signatures 
differentially affecting binding motifs. 

• High & low impact mutations assoc. w/ diff. 
signatures

• How it all relates to selection?

• Additive Effects Model
• To quantify aggregated effect of  passengers. 

Demonstratable effect, particularly for non-coding 
ones, in addition to known drivers. 

• Recasting as a predictive model 
to est. number of weak drivers 
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Non-coding Annotations: Overview
Features are often present on multiple ”scale” (eg elements and connected networks)

Sequence features, incl. Conservation Functional Genomics
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription
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http://encodec.encodeproject.org/
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Funseq: a flexible framework to determine
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
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(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building 
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modeling genomic 
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ones, in addition to known drivers. 
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to est. number of weak drivers 
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violation of the constant mutation rate assumption
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mutation rate changes across tumor

mutation rate changes across patients

within one tumor type

mutation rate changes across regions

within one tumor type
within one patient

mutation rate changes with many covariates

within one tumor type
within one patient

Inaccurate burden test results

Bad data fitting

inappropriate models

[Lochovsky et al. NAR (’15)]
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Cancer Somatic Mutation Modeling
• Suppose there are k genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri: the covariate rank of the element

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

[Lochovsky et al. NAR (’15)]

PARAMETRIC MODELS

Model 3a: Random 
Permutation of Input 
Annotations
Shuffle	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2a: Varying Mutation Rate
with Single Covariate Correction

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction

NON-PARAMETRIC MODELS

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume constant background 
mutation rate in local regions.

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation

[Lochovsky et al. Bioinformatics (‘17)]

Can preserve tri-nt context in shuffle
Similar to ”Sanger” approach in PCAWG
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MOAT-s: a variant on MOAT-v
• A somatic variant simulator

• Given a set of input variants, shuffle to new locations, taking genome structure into 
account

• Like “Broad” approach in PCAWG 

[Lochovsky et al. Bioinformatics (‘17)]



2
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial distribution is significantly better, especially for accurately modeling 

the over-dispersion of the empirical distribution

[Lochovsky et al. NAR (’15)]



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building 
Background Mutation Models, Analyzing Tumor Evolution &  Evaluating the Overall Impact of Passenger Mutations

• BMR: LARVA/MOAT 
• Uses parametric beta-

binomial model, explicitly 
modeling genomic 
covariates

• Non-parametric shuffles. 
Useful when explicit 
covariates not available.

• Tumor Evolution: 
Classification + 
Driver identification
• Intro: Mutational timing & 

tree topology classifies 
pRCC subtypes

• Identifying drivers from  
perturbations in VAF 
spectra from a single 
tumor (using many 
hitchhiking mutations to 
gain statistical support) 

• Intro
• PMI & Variant Prioritization; 

driver-passenger model 
• Data source: PCAWG 

comprehensive WGS on >2.5K 
+ focus on 35 pRCC WGS

• ENCODEC Annotation
• ENCODE cancer  resource, 

with TF & RBP networks
• Cell-space view of TN pairs
• FunSeq variant impact 

measurement integrates
conservation & network 
centrality

• Network Rewiring
• Highlights regulators that 

change  targets greatly 
• LDA approach (from text-

mining) finds those that greatly 
change their gene communities

• Overall Impact of Putative 
Passengers
• Not just high & low impact dichotomy
• How the fraction of high-impact SNVs scales & 

relates to survival
• Differences betw. Impact of early & late 

passenger mutations (eg in TSGs & oncogenes)

• Differential Impact of Signatures
• Diff. burdening of TF sub-networks naturally 

results from mutational spectra & signatures 
differentially affecting binding motifs. 

• High & low impact mutations assoc. w/ diff. 
signatures

• How it all relates to selection?

• Additive Effects Model
• To quantify aggregated effect of  passengers. 

Demonstratable effect, particularly for non-coding 
ones, in addition to known drivers. 

• Recasting as a predictive model 
to est. number of weak drivers 
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Conceptual extension of the 
canonical model of drivers and passengers
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Overall functional impact 
distribution of 
PCAWG mutations

• Funseq molecular functional impact 
of ~30M variants 
in >2500 PCAWG samples

Division of PCAWG Lymph-CLL 
cohort based on average impact of 
non-driver variants (high v low)
[A result of selection?]
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In many PCAWG cohorts, the fraction of impactful “passengers” 
decreases with increase in total mutation burden

(A result of selection?)
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Sub-clonal 
architecture of 
mutations in 

PCAWG

As expected, drivers are enriched in 
earlier subclones. Overall, no such 
enrichment among passengers.

High impact passengers are slightly 
enriched among early subclones
(weak drivers?)

Particularly, passengers in tumor 
suppressor (in contrast to oncogenes, 
which require specific mutations). 
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Continuous 
correlation of 

functional 
impact & VAF

Among mutations in driver genes: 
higher impact mutation 

Still true after removing all known 
driver variants from driver genes. 
(Latent drivers?)

Outside driver genes: 
higher impact mutation 
(Deleterious passengers?)

Functional Impact (GERP score)
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(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building 
Background Mutation Models, Analyzing Tumor Evolution &  Evaluating the Overall Impact of Passenger Mutations

• BMR: LARVA/MOAT 
• Uses parametric beta-

binomial model, explicitly 
modeling genomic 
covariates

• Non-parametric shuffles. 
Useful when explicit 
covariates not available.

• Tumor Evolution: 
Classification + 
Driver identification
• Intro: Mutational timing & 

tree topology classifies 
pRCC subtypes

• Identifying drivers from  
perturbations in VAF 
spectra from a single 
tumor (using many 
hitchhiking mutations to 
gain statistical support) 

• Intro
• PMI & Variant Prioritization; 

driver-passenger model 
• Data source: PCAWG 

comprehensive WGS on >2.5K 
+ focus on 35 pRCC WGS

• ENCODEC Annotation
• ENCODE cancer  resource, 

with TF & RBP networks
• Cell-space view of TN pairs
• FunSeq variant impact 

measurement integrates
conservation & network 
centrality

• Network Rewiring
• Highlights regulators that 

change  targets greatly 
• LDA approach (from text-

mining) finds those that greatly 
change their gene communities

• Overall Impact of Putative 
Passengers
• Not just high & low impact dichotomy
• How the fraction of high-impact SNVs scales & 

relates to survival
• Differences betw. Impact of early & late 

passenger mutations (eg in TSGs & oncogenes)

• Differential Impact of Signatures
• Diff. burdening of TF sub-networks naturally 

results from mutational spectra & signatures 
differentially affecting binding motifs. 

• High & low impact mutations assoc. w/ diff. 
signatures

• How it all relates to selection?

• Additive Effects Model
• To quantify aggregated effect of  passengers. 

Demonstratable effect, particularly for non-coding 
ones, in addition to known drivers. 

• Recasting as a predictive model 
to est. number of weak drivers 
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S: Mutation signature 
inferred

M: Mutation spectrum 
observed [T. Helleday, S. Eshtad & S. Nik-Zainal, 

Nature Reviews Genetics (’14), L. Alexandrov et al., Nature (‘13) ]

Mutational processes carry context-specific signatures

A[C>T]G
C[C>T]G

G[C>T]G
T[C>T]G

A[C>T]G
C[C>T]G

M = S × W+ ε



3
1

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Kidney cancer as an example: differential burdening 
correlates with mutational spectrum
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Signatures and molecular 
impact of passengers: 

ex of pRCC

Underlying mutational processes are 
stochastic but unevenly distributed, 
which can potentially explain the 
differential burdening of various 
genomic elements. 
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Differential Mutational burdening of TF-subnetworks 
due to SNVs breaking & creating binding sites

≈ç
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Signature differences between high- and low-impact 
passengers

Differing mutational processes 
could potentially explain the 
divergence of functional impacts 
among putative passengers.
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(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building 
Background Mutation Models, Analyzing Tumor Evolution &  Evaluating the Overall Impact of Passenger Mutations

• BMR: LARVA/MOAT 
• Uses parametric beta-

binomial model, explicitly 
modeling genomic 
covariates

• Non-parametric shuffles. 
Useful when explicit 
covariates not available.

• Tumor Evolution: 
Classification + 
Driver identification
• Intro: Mutational timing & 

tree topology classifies 
pRCC subtypes

• Identifying drivers from  
perturbations in VAF 
spectra from a single 
tumor (using many 
hitchhiking mutations to 
gain statistical support) 

• Intro
• PMI & Variant Prioritization; 

driver-passenger model 
• Data source: PCAWG 

comprehensive WGS on >2.5K 
+ focus on 35 pRCC WGS

• ENCODEC Annotation
• ENCODE cancer  resource, 

with TF & RBP networks
• Cell-space view of TN pairs
• FunSeq variant impact 

measurement integrates
conservation & network 
centrality

• Network Rewiring
• Highlights regulators that 

change  targets greatly 
• LDA approach (from text-

mining) finds those that greatly 
change their gene communities

• Overall Impact of Putative 
Passengers
• Not just high & low impact dichotomy
• How the fraction of high-impact SNVs scales & 

relates to survival
• Differences betw. Impact of early & late 

passenger mutations (eg in TSGs & oncogenes)

• Differential Impact of Signatures
• Diff. burdening of TF sub-networks naturally 

results from mutational spectra & signatures 
differentially affecting binding motifs. 

• High & low impact mutations assoc. w/ diff. 
signatures

• How it all relates to selection?

• Additive Effects Model
• To quantify aggregated effect of  passengers. 

Demonstratable effect, particularly for non-coding 
ones, in addition to known drivers. 

• Recasting as a predictive model 
to est. number of weak drivers 



Missing heritability and polygenicity

ℎ9

Organismal trait: Height

Subclonal trait in cancer: 
Growth rate

Population level definitions:
Parent-offspring heritability;
Twin-based heritability …

SNP-based polygenic & additive model:

Trait Covariates & 
fixed effects

Genetic predictors 
& random effects

Environmental noise

ℎ9 = 𝜎<
𝐙



Additive effects model to quantify cumulative effect of 
nominal passengers in PCAWG

• Model for the effect of an individual 
SNP on a phenotype

• Extension to model the combined 
effects of multiple SNPs

𝑦? = 𝜇 + 𝑧C?𝑢C + 𝑒?

𝐮 ∼ 𝑁(0, 𝜎<9I)
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Using additive effects to compare different 
categories of variants

Model: Parameters:

𝐮 ∼ 𝑁(0, 𝜎<9I)

Variant categories:
𝑘 = 1: coding drivers
𝑘 = 2: coding other
𝑘 = 3: promoters
𝑘 = 4: other non-coding
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Overall additive variance increase for multiple cancer 
cohorts in PCAWG with the inclusion of passengers

Increase in the 
variance from ~50% 
using drivers alone 
to ~59% with 
putative passengers 
included, averaged 
across all cohorts. [K
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Element level additive variance for multiple cancer 
cohorts in PCAWG, comparing coding & non-coding

In addition to 
coding 
mutations, 
promoter & 
other non-
coding 
mutations 
contributed 
significant 
amounts of extra 
variance 
(~2% & 7%) .
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Recasting the additive effects model in a predictive context:
Best Linear Unbiased Predictor (BLUP) analysis

…

Ad
di

tiv
e 

va
ria

nc
e All SNPs 95% 

CI

Cummulative

SNVs added

Lower bound on # weak drivers (8.4 pan-cancer average; enriched for PCAWG genes w/ FDR<0.25)

BLUP predictor:

S𝐮 = argmaxU 𝑃 𝐮 𝐲, 𝜎<9

= argmaxU 𝑃 𝐲 𝐮 𝑃(𝐮|𝜎<9)

SNVs, ordered by descending BLUP (S𝐮):
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Background Mutation Models, Analyzing Tumor Evolution &  Evaluating the Overall Impact of Passenger Mutations
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• How the fraction of high-impact SNVs scales & 

relates to survival
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• Differential Impact of Signatures
• Diff. burdening of TF sub-networks naturally 

results from mutational spectra & signatures 
differentially affecting binding motifs. 

• High & low impact mutations assoc. w/ diff. 
signatures

• How it all relates to selection?

• Additive Effects Model
• To quantify aggregated effect of  passengers. 

Demonstratable effect, particularly for non-coding 
ones, in addition to known drivers. 
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ENCODEC.gersteinlab.org

J Zhang, D Lee, V Dhiman, P Jiang, J Xu, 
P McGillivray, H Yang…. S Liu, K White
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L Salichos , W Meyerson , J Warrell

FunSeq.gersteinlab.org

Y Fu, E Khurana, Z Liu, S Lou, J Bedford, X Mu, K Yip
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• This Presentation is copyright Mark Gerstein, Yale University, 2019. 
• Please read permissions statement at 

sites.gersteinlab.org/Permissions
• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via 

citation to relevant papers or website link). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this presentation see 
streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be easily 
queried from flickr, viz: flickr.com/photos/mbgmbg/tags/kwpotppt


