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Brain Genomics: 
Finding drug targets for neuropsychiatric disorders via deep-learning & 

Designing a predictor for the sensitivity of drugs to human population variation

Slides freely downloadable
from Lectures.GersteinLab.org

& “tweetable” (via @MarkGerstein)

M Gerstein
Yale
(See last slide for more info.)
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PsychENCODE
’18 rollout in Science 

11 papers in total. 
Major material in the 3 capstones:

Wang et al. (‘18), Li et al. (‘18), Gandal et al. ('18)

Single Cell 
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A core issue addressed by PsychENCODE: 
Using functional genomics to reveal molecular mechanisms 

between genotype and phenotype in brain disorders

Genotype

AGEBPDSCZ

Phenotype

Genes

Modules

pathways, 
circuits

Cell types

…

Regulatory 
elements
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Disease Heritability* Molecular Mechanisms

Schizophrenia 81% (C4A)

Bipolar disorder 70% -

Alzheimer's disease 58 - 79% Apolipoprotein E (APOE), Tau

Hypertension 30% Renin–angiotensin–aldosterone

Heart disease 34-53% Atherosclerosis, VCAM-1

Stroke 32% Reactive oxygen species (ROS), 
Ischemia

Type-2 diabetes 26% Insulin resistance

Breast Cancer 25-56% BRCA, PTEN

Many psychiatric conditions are highly heritable
Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this association 
(in contrast to many other diseases such as cancer & heart disease)

Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest 
actors involved in mechanism



Finding drug targets for neuropsychiatric disorders via deep-learning & 
Designing a predictor for the sensitivity of drugs to human population variation

• PsychENCODE: Population-level 
analysis of functional genomics data 
related to neuropsychiatric disease
- Construction of an adult brain 

resource with 1866 individuals
- Large-scale processing 

creates a comprehensive QTL 
resource (~2.5M eQTLs). 

- Connecting QTLs, enhancer activity 
relationships & Hi-C contacts into a
brain regulatory network

- Embedding the reg. network in a 
deep-learning model to predict 
psychiatric disease from genotype & 
transcriptome. Using this to suggest 
specific pathways & genes, as 
potential drug targets.

• GenoDock: Building a predictor for the 
sensitivity of drug binding to personal 
SNVs
- Hybrid classifier connecting physical 

modelling with statistical learning
• The modeling creates a pseudo 

gold-standard dataset, which is 
used to train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption scores to 

cancer driver SNVs. Also, illustrates 
importance of different features (eg
GERP).

• Picks out certain drugs (eg imatinib) 
as being particularly sensitive to 
SNVs
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Collecting 
functional 
genomic 
datasets 
for the 

adult brain 

from 
PsychENCODE, 

other large 
consortia & single 

cell studies

1866
Individuals
~3.7K bulk RNA-seq
~32K single-cells  

[Wang et al. (‘18) Science]
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Larger brain eQTL sets than previous studies, 
but strong overlap with them

[Wang et al. (‘18) Science]

2,542,908 eQTLs (FDR< 0.05)
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Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor Binding Sites (TFBSs)

TF
Enhancer
Target gene

TFBS on promoter

TFBS on enhancer

!*= "#$%&'( ) − +! , + " ! , + . ! /0
TF expression (X) to predict target gene expression (Y) 
using Elastic net regression

C*i
Expression activity relationship

QTLs

C*j

C*k

Gene regulatory 
network inference 
from Hi-C, QTLs & 

Activity Correlations

[Wang et al. (‘18) Science]
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Imputed gene regulatory network for 
the human brain
Imputed gene regulatory network linking TFs, enhancers and genes plus 
QTLs

subnetworks targeting single cell marker genes
[Wang et al. (‘18) Science]



Finding drug targets for neuropsychiatric disorders via deep-learning & 
Designing a predictor for the sensitivity of drugs to human population variation

• PsychENCODE: Population-level 
analysis of functional genomics data 
related to neuropsychiatric disease
- Construction of an adult brain 

resource with 1866 individuals
- Large-scale processing 

creates a comprehensive QTL
resource (~2.5M eQTLs). 

- Connecting QTLs, enhancer activity 
relationships & Hi-C contacts into a
brain regulatory network

- Embedding the reg. network in a 
deep-learning model to predict 
psychiatric disease from genotype & 
transcriptome. Using this to suggest 
specific pathways & genes, as 
potential drug targets.
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• Independent validation 

on an expt. validation set
• Gives higher disruption scores to 

cancer driver SNVs. Also, illustrates 
importance of different features (eg
GERP).

• Picks out certain drugs (eg imatinib) 
as being particularly sensitive to 
SNVs
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Deep Structured Phenotype Network 
(DSPN) 

Boltzmann machine 

y: phenotypes

h: hidden units (e.g., circuits)

x: intermediate phenotypes 
(e.g., genes, enhancers)

z: genotypes (e.g., SNPs)

W: weights 
(e.g., regulatory network)

Variants

LR cRBM cDBM

L0
(conditioning 

units)

AGEBPDSCZ
Traits

Genes

Modules

Higher-order 
groupings

A

Embedded 
GRN layers

DSPN

Full connectivity

Sparse connectivity

Lateral connectivity

L2b

L2a

L1a/b

L1c/d

B

Layer

Sublayer

Sub-sublayer

Boundaries:

Regulatory 
elements

Cells

…

Edges:

GRN linkages

QTL linkages

L1
(visible or 

imputed units)

L2
(hidden units)

L3
(output units)

…

Nodes:

Visible

Visible or imputed 

Hidden

Cell 
Fractions

Co-expression 
modules

SNPs

Enhancers Genes

eQTL

fQTL

cQTL
Gene 

regulatory 
network

𝑝 𝐱, 𝐲, 𝐡|𝐳 ∝ exp −𝐸 𝐱, 𝐲, 𝐡|𝐳

𝐸 𝐱, 𝐲, 𝐡|𝐳 = −𝐳/𝐖𝟏𝐱 −𝐱/ 𝐖𝟐𝐱 − 𝐱/𝐖𝟑𝐡 − 𝐡/𝐖𝟒𝐡 − 𝐡/𝐖𝟓𝐲 − 𝑩𝒊𝒂𝒔

Gene 
regulatory 
network 
builds 
skeleton

Energy 
model:

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Accuracy = chance to correctly predict disease/health

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 2.5

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 3.1

[Wang et al. (‘18) Science]
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network

Actual network size:
5024/400/100/1 nodes
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network
• Sparsify network using edges with largest absolute weights (+/-)

Actual network size:
5024/400/100/1 nodes
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network
• Sparsify network using edges with largest absolute weights (+/-)
• Extract ‘best positive paths’ to each prioritized module                 

(e.g. a-a1-a2-SCZ) by summing weights and multiplying signs

Actual network size:
5024/400/100/1 nodes
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DSPN discovers enriched pathways 
and linkages to genetic variation

[Wang et al. (‘18) Science]

Cross-disorder MOD/HOG 
enrichment ranking

SCZ

BPD ASD



Finding drug targets for neuropsychiatric disorders via deep-learning & 
Designing a predictor for the sensitivity of drugs to human population variation

• PsychENCODE: Population-level 
analysis of functional genomics data 
related to neuropsychiatric disease
- Construction of an adult brain 

resource with 1866 individuals
- Large-scale processing 

creates a comprehensive QTL
resource (~2.5M eQTLs). 

- Connecting QTLs, enhancer activity 
relationships & Hi-C contacts into a
brain regulatory network

- Embedding the reg. network in a 
deep-learning model to predict 
psychiatric disease from genotype & 
transcriptome. Using this to suggest 
specific pathways & genes, as 
potential drug targets.

• GenoDock: Building a predictor for the 
sensitivity of drug binding to personal 
SNVs
- Hybrid classifier connecting physical 

modelling with statistical learning
• The modeling creates a pseudo 

gold-standard dataset, which is 
used to train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption scores to 

cancer driver SNVs. Also, illustrates 
importance of different features (eg
GERP).

• Picks out certain drugs (eg imatinib) 
as being particularly sensitive to 
SNVs
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An Example of Binding Affinity Change between Protein 
& Drug Ligand under the Impact of Single Nucleotide 
Variants (SNV)

Is there any method that
could predict the effects 
of SNVs to drug binding 
(D or ND)?

human EGFR & gefitinib (IRE)
PDB: 2ity, Chain A, amino acid 790
Modeling and Visualization: Modeller & PyMol

IRE
T790

M790

WT

MUT

IRE

Epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitors
(EGFR-TKIs) are used in the
treatments of non-small cell lung
cancer (NSCLC)

non-disruptive
SNV (ND)

disruptive 
SNV (D)

if ∆BA ≤ 0 if ∆BA > 0

For protein-drug binding upon 
point mutation, 

Wang et al. Structure, 2019
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Assessment of feasibility to build a supervised-learning
classifier for binding-disruptive SNVs
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Though limited SNVs could be mapped onto PDBs, this data pool keeps growing.

SNV: 

ExAC & TCGA

Structure:
(co-crystal) 
RCSB PDB

Drug: 

PubChem 
Compound 

availability of well-established machine learning classification algorithms

RF LR SVM GB
DT

LBA records of ∆BA for a SNV-
protein-drug sample upon point
mutation is highly scant

Physical calculations to get the
∆BA for each sample to fill the
gap, making it possible for
further statistical modelling

pseudo gold-standard of ∆BA

“real” gold-standard of ∆BA

• Ligand binding assay data
• Too few for model training

• Ligand-binding model
• Value for each sample

21

~10K
SNV-structure

-drug

Wang et al. Structure, 2019
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~0.1k
LBA of ∆BA

~10K
SNV-struc.-drug

~175K
SNV-structure

>10M
SNV

Number of sequenced 
exonic SNVs

SNVs mapped with 
human PDB (>2.8Å )

entries in 
GenoDock

(Kumar et al., 2016)

(Wang et al., 2019)

experimental ∆BA 
of human protein  
from Plabnum

(Pires et al., 2015)

• Expansion of the training dataset 
for under sampled domains

• Data augmentation is crucial to 
avoid overfitting

The Physically-based Data Augmentation Approach:
Leveraging Physical Calculations of ∆BA to Fill the Gap 

(Reichstein et al., Nature, 2019 & Xie et al., preprint, 2018)

A Hot Topic in Machine Learning is “Hybrid” Model
Integrating Physical & Statistical Calculations

The Major Hurdle: 
Highly Scant Ligand Binding Assay Data for ∆BA 

∆BA of each SNV-
protein-drug tuple

(pseudo gold-
standard), for

parameterizing
statistical learning

model

~10K

Physically-based Data 
Augmenting to

expand the ∆ BA set

Docking

am
ou

nt

time 20192015

Wang et al. Structure, 2019
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Framework for GenoDock: from Dataset Preparation to Model Construction

W
an

g 
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l. 
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 2

01
9
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3 Feature Groups as Predictor, with 4 Application Cases Based on Info Availability 

SNV + Structure + Ligand

SNV + Structure

SNV + Ligand 

SNV only

Will SNV of interest 
disrupt protein-ligand 

binding

random forest model 
trained based on 
information available

4

• Allele Frequency
• SIFT 
• PolyPhen-2
• GERP
• Germline/Somatic

Ligand Feature

• Molecular Weight
• H-bond donor
• H-bond acceptor
• Rotatable Bond #
• Polar Surface Area

SNV Feature Structure 
Feature

• Distance
• Binding Site 
• Polarity Change
• Volume Change

groups of features as 
predictors

3What are features are 
effective for 

prioritization of 
disruptive SNVs?

validate the “full feature” case 

then, expand the model to 3 more 
“feature poor” cases

Wang et al. Structure, 2019
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Core dataset constructed for training the 
statistical model. Contains pseudo gold 
standard set as the target feature.

Supervised learning model using the 
pseudo gold-standard set as target feature. 
The direct validation of this model is to 
apply the model to an independent, experi-
ment-based validation dataset.

The human protein subset from Platinum.  
used as direct validation dataset of our 
statistical method.

A physical-based, previously published 
computational ligand-docking model to 
calculate binding affinity change for the 
pseudo gold standard set.

Model Role Parameterization Validation Description

Dataset Size

ΨGS

Core
Model

Auxillery
Model

~10k

86Platinum

1

2

Validates

1

ΨGS

Statistical model
from

Physically
based

Platinum

Trains

1

Built from

2

Experiment

Role Source Description

-

List of Models & Datasets in the Study

• The statistical model and 
ligand binding model are 
the two models for this 
study;

• The validation of the 
statistical model and the 
assessment of rigor of 
the ligand binding model 
are two independent 
process.

Model 1: statistical model (GenoDock)
Model 2: ligand binding model (to calculate ΔBA)

KEY TAKE-AWAY

Wang et al. Structure, 2019



Finding drug targets for neuropsychiatric disorders via deep-learning & 
Designing a predictor for the sensitivity of drugs to human population variation

• PsychENCODE: Population-level 
analysis of functional genomics data 
related to neuropsychiatric disease
- Construction of an adult brain 

resource with 1866 individuals
- Large-scale processing 

creates a comprehensive QTL
resource (~2.5M eQTLs). 

- Connecting QTLs, enhancer activity 
relationships & Hi-C contacts into a
brain regulatory network

- Embedding the reg. network in a 
deep-learning model to predict 
psychiatric disease from genotype & 
transcriptome. Using this to suggest 
specific pathways & genes, as 
potential drug targets.

• GenoDock: Building a predictor for the 
sensitivity of drug binding to personal 
SNVs
- Hybrid classifier connecting physical 

modelling with statistical learning
• The modeling creates a pseudo 

gold-standard dataset, which is 
used to train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption scores to 

cancer driver SNVs. Also, illustrates 
importance of different features (eg
GERP).

• Picks out certain drugs (eg imatinib) 
as being particularly sensitive to 
SNVs
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The pseudo Gold-Standard as Self-Constructed Prediction Target:
Physical Calculations for Binding Affinity Score Change (ΔBA)

27

Eq
ua

bo
n 

ExAC: 8565 SNV-PDB native-mutant pairs
TCGA: 1718 SNV-PDB native-mutant pairs

∆∆𝐆 𝐒𝐍𝐕 = ∆𝐆 𝐒𝐍𝐕 -∆𝐆(𝐖𝐓)

∆G(WT): BA of WT protein-drug complex
∆G SNV : BA of point mutated  protein-drug complex
∆∆G SNP : BA change

Da
ta

se
t 

AutoDock
4MDock AutoDock

Vina

Ap
pr

oa
ch

 

• Pearson Product-Moment Correlation (PMCC) reveals 
good consistency of different docking calculations

• PMCC (Vina & AD4) = 0.89

• PMCC (Vina & MDock) = 0.94

Wang et al. Structure, 2019

8000
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1st iteration

2nd iteration

3rd iteration

10th

iteration

… …

Training folds Test fold

Training set (70%)

n disruptive SNVs

n non-disruptive SNVs

1. Model training

RF LR SVM GB
DT

2. Evaluation

…
RF

Selected model

Test set (30%) 3. M
odel testing

Independent Validation
(Platinum Experiment Dataset)

n disruptive SNVs:

n non-disruptive SNVs:

10-fold
cross-validation

28

Stabsbcal Model
Development for

GenoDock

test on experiment 
data auROC= 0.62

cross validation on pseudo G.S.
auROC=0.97

Fi
na

liz
ed

 
m

od
el

 
Wang et al. Structure, 2019

Given the pseudo Gold-Standard, the Workflow for Building the Statistical 
Model & its Performance in Cross-validation & Independent Testing
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human EGFR & gefitinib (IRE)
PDB: 2ity

IRE
T790

M790

mutation 
close to
ligand

steric
hindrance

high impact 
by SNV 
features

Prob. of
∆ BA > 0 by
GenoDock:

64.0%*

(a)

human FPPS & zoledronate (ZOL)
PDB: 4p0w

ZOL

R112

H112

(b) mutation 
close to
ligand

salt bridge 
disappeared

high 
evolutionary 
significance

DECISION FLOW EXPLANATIONVISUALIZATION
W

T
M

UT

Prob. of
∆ BA > 0 by
GenoDock:

99.8%*

large polar surface 
area of ligand

increased 
hydrophobicity

distance from
ligand < 3Å

1

volume
increased by

33.3%

3

GERP = 5.9
PPH = 1
SIFT =0

4
5
8

distance from
ligand < 3Å

1

7

GERP score ≈ 4.04

Structure Feature SNV Feature Ligand Feature 1-10: Feature significance rank by Gini Distance for selected features
* ∆ BA > 0 validated by docking calculations

W
T

M
UT

10

29

Example of the Output of the Classifier: GenoDock Helps Characterize 
Known & Unknown SNVs that Disrupt Protein-Ligand Binding

Wang et al. Structure, 2019



SNV annotations only SNV Anno. + Structure

SNV Anno. + Ligand SNV Anno. + Structure + Ligand

feature importance

fe
at

ur
es

(b)
(a)

(c) (d)

hydropathy change

GERP score

PPH score

SIFT score

allele freq.

volume change

GERP score

PPH score

SIFT score

allele freq.

mol. weight

H-bond donor

H-bond acceptor

rotatable bond

polar surface area

GERP score

PPH score

SIFT score

allele freq.

hydro. change

GERP score
PPH score
SIFT score

allele freq.

volume change

mol. weight

H-bond donor

H-bond acceptor

rotatable bond
polar surface area

bind site

bind site

bind site

distance

Wang et al. Structure, 2019

Gini Distance for Relative Feature Importance in 4 Models

GERP

DIST to 
Binding 
Site

dV

ASA(polar)
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80%

100%

COMMON
(ExAC)

RARE
(ExAC)

PASSENGER
(TCGA)

DRIVER
(TCGA)

bi
nd

in
g 

af
fin

ity
 c

ha
ng

e
(k

ca
l/

m
ol

)

percentage

percentage of SNV leads to ∆ BA ≤ 0 

percentage of SNV leads to ∆ BA = 0 
∆ BA in different groups of SNV that leads to ∆ BA > 0 

60%

40%

20%

0%0.0

0.2

0.4

0.6

0.8

1.0

P-value:
3.60e-4

Boxplot of Overall Ligand Binding Affinity Changes 
for Different Types of SNVs in GenoDock

31

The more an SNV 
is considered 
disease-
associated, the 
greater chance 
that this SNV 
would destabilize 
binding affinity 
of the protein 
and drug ligand.

94% 93% 91%

85%

88% 87% 87%

77%

0.117 kcal/mol 0.129 kcal/mol 0.159 kcal/mol

0.236 kcal/mol

Wang et al. Structure, 2019
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Application of GenoDock to large-scale screening of 
disruptive SNVs for Drug Ligand interactions

0.00 0.25 0.50 0.75 1.00

probability of a disruptive nsSNV

de
ns

ity

0.0

1.0

2.0

3.0

4.0

5.0

probability

21%

51%

7%

65%

33%

35%

32%

11%

18%

36%

de
ns

ity

32Wang et al. Structure, 2019

Aceta-
zolamide
(glaucoma) 

Imatinib
(cancer)



Finding drug targets for neuropsychiatric disorders via deep-learning & 
Designing a predictor for the sensitivity of drugs to human population variation

• PsychENCODE: Population-level 
analysis of functional genomics data 
related to neuropsychiatric disease
- Construction of an adult brain 

resource with 1866 individuals
- Large-scale processing 

creates a comprehensive QTL
resource (~2.5M eQTLs). 

- Connecting QTLs, enhancer activity 
relationships & Hi-C contacts into a
brain regulatory network

- Embedding the reg. network in a 
deep-learning model to predict 
psychiatric disease from genotype & 
transcriptome. Using this to suggest 
specific pathways & genes, as 
potential drug targets.

• GenoDock: Building a predictor for the 
sensitivity of drug binding to personal 
SNVs
- Hybrid classifier connecting physical 

modelling with statistical learning
• The modeling creates a pseudo 

gold-standard dataset, which is 
used to train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption scores to 

cancer driver SNVs. Also, illustrates 
importance of different features (eg
GERP).

• Picks out certain drugs (eg imatinib) 
as being particularly sensitive to 
SNVs



Finding drug targets for neuropsychiatric disorders via deep-learning & 
Designing a predictor for the sensitivity of drugs to human population variation

• PsychENCODE: Population-level 
analysis of functional genomics data 
related to neuropsychiatric disease
- Construction of an adult brain 

resource with 1866 individuals
- Large-scale processing 

creates a comprehensive QTL 
resource (~2.5M eQTLs). 

- Connecting QTLs, enhancer activity 
relationships & Hi-C contacts into a
brain regulatory network

- Embedding the reg. network in a 
deep-learning model to predict 
psychiatric disease from genotype & 
transcriptome. Using this to suggest 
specific pathways & genes, as 
potential drug targets.

• GenoDock: Building a predictor for the 
sensitivity of drug binding to personal 
SNVs
- Hybrid classifier connecting physical 

modelling with statistical learning
• The modeling creates a pseudo 

gold-standard dataset, which is 
used to train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption scores to 

cancer driver SNVs. Also, illustrates 
importance of different features (eg
GERP).

• Picks out certain drugs (eg imatinib) 
as being particularly sensitive to 
SNVs
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PsychENCODE
Acknowledgment

• Geetha Senthil
• Lora Bingaman
• David Panchision
• Alexander Arguello
• Thomas Lehner

The PsychENCODE Consortium: Allison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University; 
Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E 
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M 
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for 
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at 
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount 
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai; 
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine 
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of 
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at 
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A 
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research 
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu, 
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South 
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas 
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los 
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre 
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San 
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray, 
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of Illinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical 
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School; 
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel 
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian 
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of 
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P. 
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University; 
Robert R. Kitchen, Yale University; Gamze Gürsoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale University; 
Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University; Anna Szekely, 
Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;.

“Adult Capstone” Team – 1 of 3 capstones

Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung
Won, Xu Shi, Fabio Navarro, Declan Clarke, Mengting Gu, 
Prashant Emani, Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing 
Zhang, Jonathan J. Park, Chengfei Yan, Suhn Kyong Rhie, Kasidet
Manakongtreecheep, Holly Zhou, Aparna Nathan, Mette Peters, Eugenio Mattei, 
Dominic Fitzgerald, Tonya Brunetti, Jill Moore, Yan Jiang, Kiran Girdhar, Gabriel 
Hoffman, Selim Kalayci, Zeynep Hulya Gumus, Greg Crawford,
PsychENCODE Consortium,
Panos Roussos, Schahram Akbarian, Andrew E. Jaffe, Kevin White, Zhiping Weng, 
Nenad Sestan, 
Daniel H. Geschwind, James A. Knowles
Dedicated to Pamela Sklar Resource.psychencode.org
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GenoDock.molmovdb.org

B Wang, C Yan, 
S Lou, P Emani, B Li, M Xu, X Kong, W Meyerson, Y Yang, D Lee

See

JOBS.gersteinlab.org
Hiring Postdocs
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Extra
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2019. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


