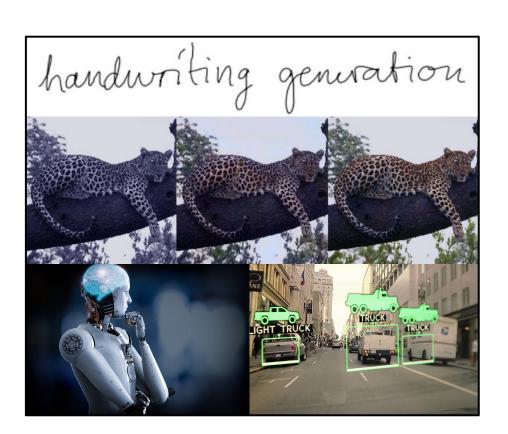
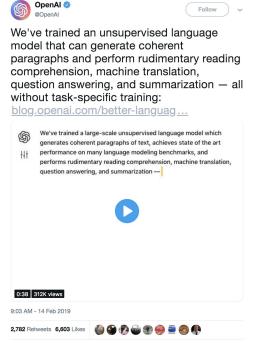
Deep Learning in Biomedical Data Science

- Image Color Restoration
- Image Captioning
- Object Classification
- Robotics
- Self-driving Cars
- Machine Translation
- Speech Recognition
- Text Generation
- Handwriting Generation
- Music Composition
- & more

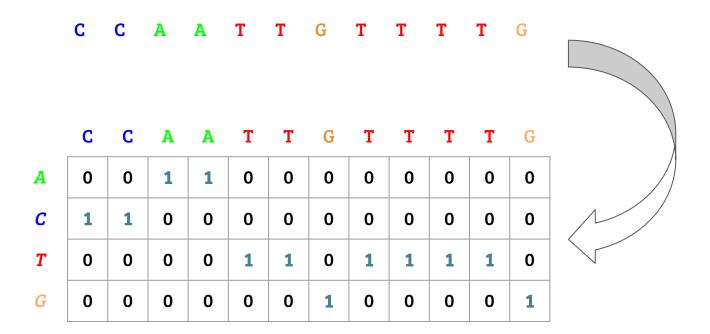




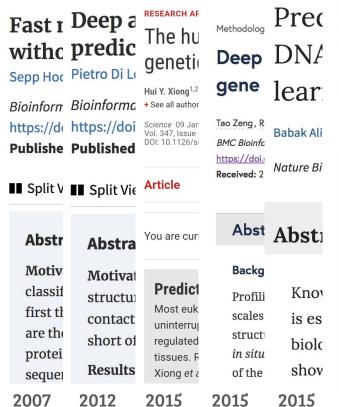
DeepMind's new Al just beat top human pro-gamers at Starcraft II for the first time

[https://thispersondoesnotexist.com]

One-Hot Encoding of Sequences



Biomedical Data Science



Convolutional neural network architectures for predicting DNA-protein binding 3

Haoyang Zeng, Matthew D. Edwards, Ge Liu, David K. Gifford ▼

Bioinformatics, Volume 32, Issue 12, 15 June 2016, Pages i121-i127,

https://doi.org/10.1093/bioinformatics/btw255

Published: 11 June 2016

■ Split View 66 Cite Permissions < Share ▼

Abstract

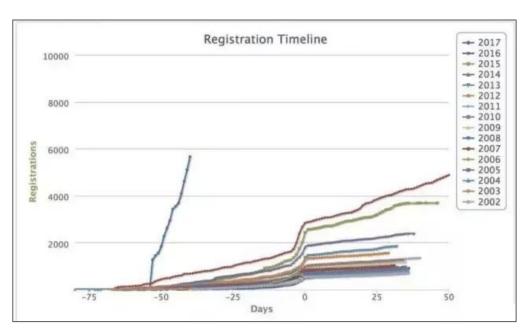
Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications.

Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription

2016

Biomedical Data Science

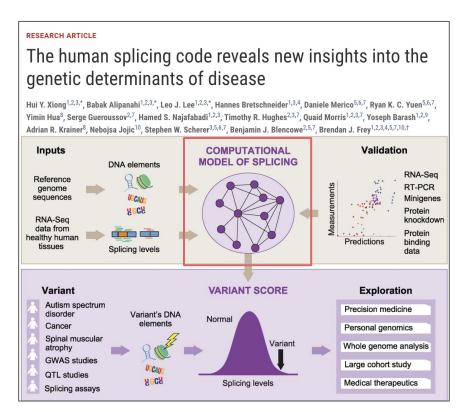
DeepBind, DeepFold, DeepSEA,
 DeepCNF, DeepVariant,
 DeepMotif, DeepLNC, DeepCpG,
 DeepCyTOF, DeepChrome,
 DeepWAS, DeepSplice, and other methods



NeurIPS Registration Timeline [2002-17] @lxbrun

Biomedical Data Science

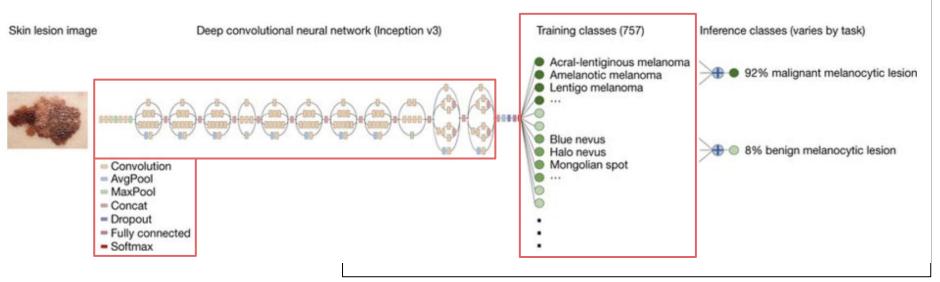
- Prediction of RNA Splicing
- 1393 sequence features as input
- Fully-connected neural networks
- RNA-seq from *Illumina Human Body Map* 2.0 project
- Assessment of >650,000 SNPs effect on splicing regulation from the NCBI database of genetic variation (dbSNP) and Human Gene Mutation Database (HGMD)



Biomedical Data Science

- Skin cancer classification
- 129,450 clinical images from public

Dermatologist-level classification of skin



[2017]

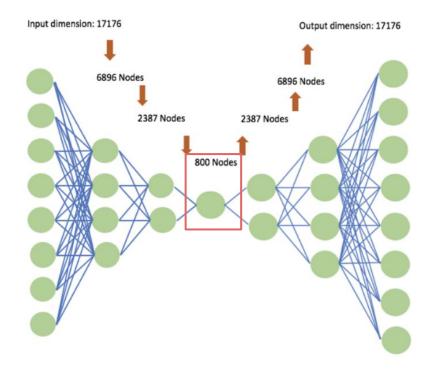
Biomedical Data Science

- Denoising Autoencoder (AE) for genomic data imputation
- |I| = |O|, bottleneck layer |B| << |I|, |O|
- 17,000+ genes, 269,000+ CpG sites
- Pan-Cancer RNA-seq and DNA Methylation data from The Cancer Genome Atlas (TCGA)

A deep learning framework for imputing missing values in

genomic data

Yeping Lina Qiu^{1,2}, Hong Zheng², Olivier Gevaert^{2,3,*}



Challenges

- Interpretability
 - Different from interpretability in Optimization
 - Weight matrix interpretation
 - o Input feature prioritization
 - o Biologically or clinically-driven
 - Earlier and later layers usually have more importance
- Data availability
- Hyperparamter Optimization
 - Set before training
 - Finding suboptimal combinations can be time consuming

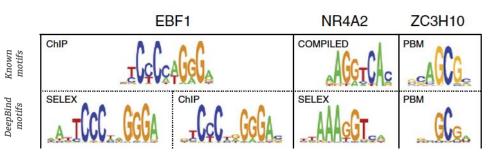
Interpretability

DeepBind

- Interpretability
 - Different from interpretability in Optimization
 - Weight matrix interpretation
 - Input feature prioritization
 - o Biologically or clinically-driven
 - Earlier and later layers usually have more importance
- What would happen if the number of convolution filters is quite high?

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi 1,2,6, Andrew Delong 1,6, Matthew T Weirauch 3–5 & Brendan J Frey 1–3



Interpretability

SurvivalNet

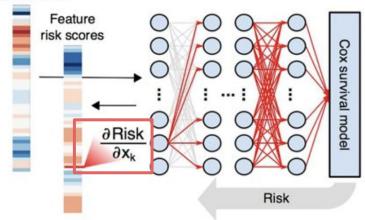
- Interpretability
 - Different from interpretability in Optimization
 - Weight matrix interpretation
 - Input feature prioritization
 - o Biologically or clinically-driven
 - Earlier and later layers usually have more importance
- 17,000-18,000 features dominated by gene expression and clinical variables
- Why would features be prioritized? What would potential downstream analyses be?

Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models

Received: 23 May 2017 Accepted: 30 August 2017 Published online: 15 September 2017

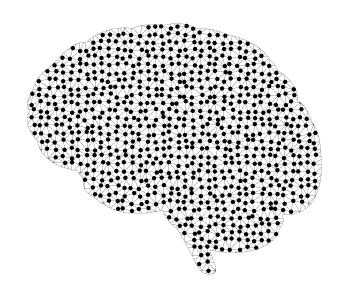
Safoora Yousefi¹, Fatemeh Amrollahi¹, Mohamed Amgad¹, Chengliang Dong², Joshua E. Lewis², Congzheng Song⁴, David A. Gutman⁵, Sameer H. Halani⁸, Jose Enrique Velazquez Vega², Daliel J. Brat^{2,8} & Lee A. D. Cooper², ^{1,3,8}

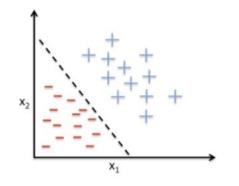
Patient features

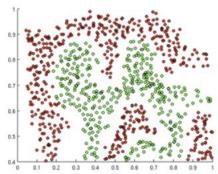


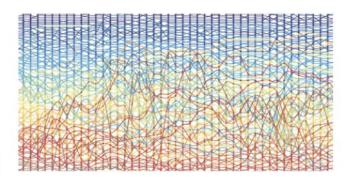
Notes

- Advances in computing
- Availability of large datasets
- Ability to detect highly complex, non-linear patterns
- Ability to predict many outputs at once
- Transfer learning to *transfer* patterns learned by one model to another









Resources

INTERFACE

rsif.royalsocietypublishing.org

Headline review

Cite this article: Ching T *et al.* 2018 Opportunities and obstacles for deep learning in biology and medicine. *J. R. Soc. Interface* **15**: 20170387.

http://dx.doi.org/10.1098/rsif.2017.0387

Opportunities and obstacles for deep learning in biology and medicine

Travers Ching^{1,†}, Daniel S. Himmelstein², Brett K. Beaulieu-Jones³,
Alexandr A. Kalinin⁴, Brian T. Do⁵, Gregory P. Way², Enrico Ferrero⁶,
Paul-Michael Agapow⁷, Michael Zietz², Michael M. Hoffman^{8,9,10}, Wei Xie¹¹,
Gail L. Rosen¹², Benjamin J. Lengerich¹³, Johnny Israeli¹⁴, Jack Lanchantin¹⁷,
Stephen Woloszynek¹², Anne E. Carpenter¹⁸, Avanti Shrikumar¹⁵, Jinbo Xu¹⁹,
Evan M. Cofer^{20,21}, Christopher A. Lavender²², Srinivas C. Turaga²³,
Amr M. Alexandari¹⁵, Zhiyong Lu²⁴, David J. Harris²⁵, Dave DeCaprio²⁶,
Yanjun Qi¹⁷, Anshul Kundaje^{15,16}, Yifan Peng²⁴, Laura K. Wiley²⁷,
Marwin H. S. Segler²⁸, Simina M. Boca²⁹, S. Joshua Swamidass³⁰,
Austin Huang³¹, Anthony Gitter^{32,33} and Casey S. Greene²

Resources

- Neural Networks and Deep Learning by Michael Neilson [http://neuralnetworksanddeeplearning.com/]
- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville [http://www.deeplearningbook.org/]
- DeepLearning.ai on Coursera
 [https://www.coursera.org/deeplearning-ai]

Resources

