Biomed. Data Science:

Unsupervised Datamining

Mark Gerstein, Yale University

gersteinlab.org/courses/452
(last edit in spring '19, pack \#8)

The World of Machine Learning

Abstract Overview: Supervised vs Unsupervised Mining

Structure of Genomic Features Matrix

1
Factors
and
Chromatin
Modifications
(different tissues)

RNA
(different tissues)

Sites along the genome

Represent predictors in abstract high dimensional space

"Label" Certain Points

"Cluster" predictors (Unsupervised)

Use Clusters to predict Response (Unsupervised, guilt-by-association)

Develop Separator Based on Labeled Points (Supervised)

Predict based on Separator
 (Supervised)

Unsupervised Mining

- Simple overlaps \& enriched regions
- Clustering rows \& columns (networks)
- PCA
- SVD (theory + appl.)
- Weighted Gene Co-Expression Network
- Biplot
- CCA

Genomic Features Matrix: Deserts \& Forests

1
Sites along the genome
Factors
and
Chromatin
Modifications (different tissues)

RNA
(different
tissues)

Non-random distribution of TREs

- TREs are not evenly distributed throughout the encode regions ($P<2.2 \times 10^{-16}$).
- The actual TRE distribution is power-law.
- The null distribution is 'Poissonesque.'
- Many genomic subregions with extreme numbers of TREs.

Aggregation \& Saturation

B Saturation Analysis

C Aggregation Analysis

Unsupervised Mining

Clustering Columns \& Rows of the Data Matrix

Correlating Rows \& Columns

Spectral Methods Outline \& Papers

- Simple background on PCA (emphasizing lingo)
- Expression Clustering
- More abstract run through on SVD
- Application to
- O Alter et al. (2000). "Singular value decomposition for genomewide expression data processing and modeling." PNAS 97: 10101
- Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology 2007, 1:54
- Z Zhang et al. (2007) "Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions." Genome Res 17: 787
- TA Gianoulis et al. (2009) "Quantifying environmental adaptation of metabolic pathways in metagenomics." PNAS 106: 1374.

Expression Clustering

Agglomerative Clustering

- Bottom up v top down (K-means, know how many centers)

- Single or multilink
- threshold for connection?

K-means

Step 2

1) Pick ten (i.e. k?) random points as putative cluster centers.
2) Group the points to be clustered by the center to which they are closest.
3) Then take the mean of each group and repeat, with the means now at the cluster center.
4)Stop when the centers stop moving.

Clustering

[Brown, Davis] the yeast cell cycle to uncover interacting proteins

Microarray timecourse of 1 ribosomal protein

Clustering

 the yeast cell cycle to uncover interacting proteins

Random relationship from $\sim 18 \mathrm{M}$
the yeast cell cycle to uncover interacting proteins

Close relationship from 18M (2 Interacting Ribosomal Proteins)

Clustering

 the yeast cell cycle to uncover interacting proteins

Predict Functional Interaction of Unknown Member of Cluster

Global
 Network of Relationships

Network = Adjacency Matrix

- Adjacency matrix $A=\left[a_{i j}\right]$ encodes whether/how a pair of nodes is connected.
- For unweighted networks: entries are 1 (connected) or 0 (disconnected)
- For weighted networks: adjacency matrix reports connection strength between gene pairs

Weighted Gene Co-Expression Network Analysis

Module Detection

- Numerous methods exist
- Many methods define a suitable gene-gene dissimilarity measure and use clustering.
- In our case: dissimilarity based on topological overlap
- Clustering method: Average linkage hierarchical clustering
- branches of the dendrogram are modules

Example of module detection via hierarchical clustering

- Expression data from human brains, 18 samples.

Dendrogram and module colors

- Often: Would like to treat

Module eigengenes

 modules as single units

- Biologically motivated data reduction
- Our choice: module eigengene = $1^{\text {st }}$ principal component of the module expression matrix
- Intuitively: a kind of average expression profile

Human brain expression data, 18 samples
Module consisting of 50 genes

Quick Refresher on PCA/Matrices

What is PCA?

- A technique used to reduce the dimensionality of a data set by finding directions of maximum variability
- Projection (typically a rotation) into new axes
- But still retains the dataset's variation

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt

Quick Refresher on Matrices
 $$
\left(\begin{array}{lll} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{array}\right) *\left(\begin{array}{l} a \\ b \\ c \end{array}\right)=\left(\begin{array}{l} a x_{1}+b y_{1}+c z_{1} \\ c x_{2}+b y_{2}+c z_{2} \\ a x_{3}+b y_{3}+c z_{3} \end{array}\right)
$$

$$
\begin{aligned}
& \text { Matrix A is } 3 x 4 \text { Matrix B is } 4 x 4 \\
& {\left[\begin{array}{cccc}
8 & 3 & 0 & 1 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{cccc}
5 & \cdot & \cdot & \cdot \\
4 & \cdot & \cdot & \cdot \\
3 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot
\end{array}\right]=\left[\begin{array}{cccc}
\text { Matrix } \mathbf{C} & \text { is } 3 x 4 \\
53 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]}
\end{aligned}
$$

$$
\text { because } c_{11}=\sum_{k=1}^{4} a_{1 k} b_{k 1}=8 \cdot 5+3 \cdot 4+0 \cdot 3+1 \cdot 1=53
$$

Unsupervised Mining

SVD

Puts together slides prepared by Brandon Xia with images from Alter et al. papers

SVD for microarray data (Alter et al, PNAS 2000)

$A=U S V^{T}$

- A is any rectangular matrix ($\mathrm{m} \geq \mathrm{n}$)
- Row space: vector subspace generated by the row vectors of A
- Column space: vector subspace generated by the column vectors of A
- The dimension of the row \& column space is the rank of the matrix $A: r(\leq n)$
- A is a linear transformation that maps vector x in row space into vector $A x$ in column space

$A=U S V^{T}$

- U is an "orthogonal" matrix ($\mathrm{m} \geq \mathrm{n}$)
- Column vectors of U form an orthonormal basis for the column space of A: $U^{T} U=I$
- $\boldsymbol{u}_{l}, \ldots, \boldsymbol{u}_{n}$ in U are eigenvectors of $A A^{T}$
$-A A^{T}=U S V^{T} V S U^{T}=U S^{2} U^{T}$
- "Left singular vectors"

$A=U S V^{T}$

- V is an orthogonal matrix (n by n)
- Column vectors of V form an orthonormal basis for the row space of A: $V^{T} V=V V^{T}=I$

$$
\cdot V=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \text { ? } & \mathbf{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

$-A^{T} A=V S U^{T} U S V^{T}=V S^{2} V^{T}$

- "Right singular vectors"

$$
A=U S V^{T}
$$

- S is a diagonal matrix (n by n) of nonnegative singular values
- Typically sorted from largest to smallest
- Singular values are the non-negative square root of corresponding eigenvalues of $A^{T} A$ and $A A^{T}$

$$
A V=U S
$$

- Means each $A \boldsymbol{v}_{i}=s_{i} \boldsymbol{u}_{i}$
- Remember A is a linear map from row space to column space
- Here, A maps an orthonormal basis $\left\{v_{i}\right\}$ in row space into an orthonormal basis $\left\{\boldsymbol{u}_{i}\right\}$ in column space
- Each component of u_{i} is the projection of a row of the data matrix A onto the vector v_{i}

SVD as sum of rank-1 matrices

- $A=U S V^{T}$
- $A=s_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+s_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T}+\ldots+s_{n} \boldsymbol{u}_{n} \boldsymbol{v}_{n}{ }^{T}$
an outer product (uv^{\top}) giving a matrix rather than the scalar of the inner product
- $s_{1} \geq s_{2} \geq \ldots \geq s_{n} \geq 0$
- What is the rank-r matrix A that best approximates A ?
- Minimize $\quad \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\hat{A}_{i j}-A_{i j}\right)^{2}$

LSQ approx. If
$r=1$, this amounts
to a line fit.

- $A=s_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}{ }^{T}+s_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}{ }^{T}+\ldots+s_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}{ }^{T}$
- Very useful for matrix approximation

Examples of (almost) rank-1 matrices

- Steady states with fluctuations $\left(\begin{array}{lll}101 & 103 & 102 \\ 302 & 300 & 301 \\ 203 & 204 & 203 \\ 401 & 402 & 404\end{array}\right)$
- Signals?

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Geometry of SVD in row space

This line segment that goes through origin approximates the original data set

The projected data set approximates the original data set

Geometry of SVD in row space

- A as a collection of m row vectors (points) in the row space of A
- $s_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+s_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T}$ is the best rank-2 matrix approximation for A
- Geometrically: \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are the directions of the best approximating rank-2 subspace that goes through origin
- $s_{1} \boldsymbol{u}_{1}$ and $s_{2} \boldsymbol{u}_{2}$ gives coordinates for row vectors in rank-2 subspace
- v_{1} and v_{2} gives coordinates for row space basis vectors in rank-2 subspace

$$
A \mathbf{v}_{\mathbf{i}}=s_{i} \mathbf{u}_{\mathbf{i}}
$$

$$
I \mathbf{v}_{\mathbf{i}}=\mathbf{v}_{\mathbf{i}}
$$

What about geometry of SVD in column space?

- $A=U S V^{T}$
- $A^{T}=V S U^{T}$
- The column space of A becomes the row space of A^{T}
- The same as before, except that U and V are switched

Additional Points

- Time Complexity (Cubic)
- Application to text mining
- Latent semantic indexing
- sparse

Potential problems of SVD/PCA

If the dataset...

- Lacks Independence - NO PROBLEM
- Lacks Normality
- Normality desirable but not essential
- Lacks Precision
- Precision desirable but not essential
- Lacks Linearity
- Problem: Use other non-linear (kernel) methods
- Many Zeroes in Data Matrix (Sparse)
- Problem: Use Correspondence Analysis

Unsupervised Mining

Intuition on interpretation of SVD in terms of genes and conditions

Genes sorted by correlation with top 2 eigengenes

Alter, Orly et al. (2000) Proc. Natl. Acad. Sci. USA 97, 10101-10106
Fig. 3. Genes sorted by relative correlation with $\left|\gamma_{1}\right\rangle_{N}$ and $\left|\gamma_{2}\right\rangle_{N}$ of normalized elutriation. (a) Normalized elutriation expression of the sorted 5,981 genes in the 14 arrays, showing traveling wave of expression. (b) Eigenarrays expression; the expression of $\left|\alpha_{1}\right\rangle_{N}$ and $\left|\alpha_{2}\right\rangle_{N}$, the eigenarrays corresponding to $\left|\gamma_{1}\right\rangle_{N}$ and $\left|\gamma_{2}\right\rangle_{N}$, displays the sorting. (c) Expression levels of $\left|\alpha_{1}\right\rangle_{N}(\mathrm{red})$ and $\left|\alpha_{2}\right\rangle_{N}$ (green) fit normalized sine and cosine functions of period $Z \equiv N-1=5,980$ and phase $\theta \approx 2 \pi / 13$ (blue), respectively.

Normalized elutriation expression in the subspace associated with the cell cycle

Fig. 2. Normalized elutriation expression in the subspace associated with the cell cycle. (a) Array correlation with $\left|\alpha_{1}\right\rangle_{N}$ along the y-axis vs. that with $\left|\alpha_{2}\right\rangle_{N}$ along the x-axis, colorcoded according to the classification of the arrays into the

Alter, Orly et al. (2000) Proc. NatI. Acad.
Sci. USA 97, 10101-10106 five cell cycle stages, M / G_{1} (yellow), G_{1} (green), S (blue), S / G_{2} (red), and $\mathrm{G}_{2} / \mathrm{M}$ (orange). The dashed unit and half-unit circles outline 100% and 25% of overall normalized array expression in the $\left|\alpha_{1}\right\rangle_{N}$ and $\left|\alpha_{2}\right\rangle_{N}$ subspace. (b) Correlation of each gene with $\left|\gamma_{1}\right\rangle_{N}$ vs. that with $\left|\gamma_{2}\right\rangle_{N}$, for 784 cell cycle regulated genes, color-coded according to the classification by Spellman et al. (3).

Unsupervised Mining

Biplot

- A biplot is a lowdimensional (usually 2D) representation of a data matrix \mathbf{A}.
- A point for each of the m observation vectors (rows of A)
- A line (or arrow) for each of the n variables (columns of A)

TFs: a, b, c...
Genomic Sites: 1,2,3...
A

	a	b	c
	21	16	28
2	14	18	25
3	14	17	22
4	14	19	33
5	17	23	28
6	20	14	34
7	22	21	30
8	15	18	22
9	18	13	36
10	24	10	32

	a	b	C
a	1.00	-0.44	0.48
b	-0.44	1.00	-0.40
C	0.48	-0.40	1.00

```
\[
\begin{array}{llllllllll}
21 & 14 & 14 & 14 & 17 & 20 & 22 & 15 & 18 & 24 \\
16 & 18 & 17 & 19 & 23 & 14 & 21 & 18 & 13 & 10 \\
28 & 25 & 22 & 33 & 28 & 34 & 30 & 22 & 36 & 32
\end{array}
\]
```


Principal component V1

Principal component U1

TFs: a, b, c...
Genomic
Sites: 1,2,3... $\mathrm{A}=\mathrm{USV}^{\top}$

$$
\begin{array}{ccc}
a & b & c \\
\hline 21 & 16 & 28 \\
14 & 18 & 25 \\
14 & 17 & 22 \\
14 & 19 & 33 \\
17 & 23 & 28 \\
20 & 14 & 34 \\
22 & 21 & 30 \\
15 & 18 & 22 \\
18 & 13 & 36 \\
24 & 10 & 32
\end{array}
$$

\mathbf{A}^{\top}

	1	2	3	4	5	6	7	8	9	10
	21	14	14	14	17	20	22	15	18	24
b	16	18	17	19	23	14	21	18	13	10
c	28	25	22	33	28	34	30	22	36	32

Biplot to Show Overall Relationship of TFs \& Sites

$$
\begin{aligned}
& \\
& \mathrm{A}^{\mathrm{T}} \mathrm{~A} \text { (TF-TF corr.) }
\end{aligned}
$$

Results of Biplot:

- Pilot ENCODE (1\% genome): 599610 kb genomic bins (adding all hits) + 105 TF experiments \rightarrow biplot
- Closeness of points gives clustering of "sites"
- Projection of site onto vector gives degree to which

Results of Biplot

- Biplot groups TFs into sequence-specific and sequence-nonspecific clusters.
- c-Myc may behave more like a sequence-nonspecific TF.
- H3K27me3 functions in a transcriptional regulatory process in a rather sequence-specific manner.
- Genomic Bins are associated with different TFs and in

Unsupervised Mining

CCA

Sorcerer II Global Ocean Survey

Sorcerer II Global Ocean Survey

Expressing data as matrices indexed by site, env. var., and pathway usage

Simple Relationships: Pairwise Correlations

Canonical Correlation Analysis: Simultaneous weighting

\# km run/week	Weight

Fit Index $=a \cos +b+c$

Canonical Correlation Analysis: Simultaneous weighting

\# km run/week	Weight

Life	Environmental Features
Fit	Metabolic Pathways/ Protein Families
Temp etc Chlorophyll	Photosynthesis etc
Lipid Metabolism	

CCA: Finding Variables with Large Projections in "Correlation Circle"

The goal of this technique is to interpret cross-variance matrices We do this by defining a change of basis.

Strength of Pathway co-variation with environment

Environmentally invariant

Environmentally variant

CCA structural correlation

Conclusion \#1: energy conversion strategy, temp and depth

