EN-TEx / Personal Genomes subgroup

M Gerstein & E Aiden '19 ENCODE meeting

Goals of <u>EN-TEx</u>

Collaboration between **<u>EN</u>**CODE & G<u>**TEx</u></u></u>**

Cataloguing genomic elements in personal genomes with matched ENCODE datasets & the full breadth of assays on many tissues

- Collect matched WGS & functional genomic data across ~20 tissues for 4 individuals.
- 2. Catalogue genomic elements across individuals & tissues and study their variation
- Study the utility of phased personal diploid genomes for analyzing functional genomics data

53,196 kb	1	53,198 kb
	Potential E	nh_
		_
= =		
_ =		
_	—	_
— =		=
-	_	_
	=	_
	_	

1. The Matched Data Matrix & Personal Genome

EN-TEx

Assays, Individuals & Tissue Types

EN-TEx Full Data Matrix as of Dec-2018

Collapsed & simplified analysis matrix

EN-TEx dataset (Number of assays)

EN-TEx Hi-C Assembly with chromosomal length scaffolds

55x Long Reads *Only for ENC-002 & ENC-003

HiC Analysis

Illumina m=350bp; > 120x Paired End All 4 samples Full chromosome phasing

Ren Lab Hi-C data Aiden Lab assembly (more on tools later)

Comparison with reference

EN-TEX WGS with whole chromosome phasing

HiC Analysis

Illumina m=350bp; > 120x Paired End All 4 samples Full chromosome phasing

\$

Del.

Michael Schatz, Bing Ren, Thomas Gingeras

Variant calls

	Sub	Ins (<50)	Del (<50)	SV (>50)
ENC-001	3,895,883	255,857	281,757	0
ENC-002	3,877,699	272,322	296,040	24,696
ENC-003	4,024,169	288,027	314,366	26,181
ENC-004	3,947,657	263,092	293,823	0

SV count by type

	Sample	SV-Ins	SV-Del	Inv	Dup	Trans
_	ENC-002*	11,745	10,460	281	1,850	360
-	ENC-003*	3,077	10,813	248	1,746	297
	GIAB son*	13,750	11,487	300	1,647	0
	NA12878*	, 27	9,385	230	1,057	394
	1000 Genomes [‡]	168	42,279	786	6,025	0

* PacBio Long Reads w/NGMLR & Sniffles

[‡] Illumina short reads across 2,504 humans

EN-TEX SV calls: very developed & accurate

SV concordance among genomes

	ENC002	ENC003	NA12878	GIAB
ENC002	19725	12297	10746	12573
ENC003	12297	20693	10771	12551
NA12878	10746	10771	16966	11237
GIAB	12573	12551	11237	21036

Michael Schatz

Assembling a phased personal diploid genome from all the variant calls

Stitching based on AlleleSeq pipeline enhanced for SVs

Maintains a mapping from reference to personal genome coordinates for liftover

Using 10X + HiC + PacBio, assemble nearly perfect diploid human genomes

• Phased diploid genome can be aligned or aligned against

2. Variation in Transcriptome & Epigenome across Individuals & Tissues

Var. across tissues & individuals (single locus)

RNA-seq ATAC-seq DNAse H3K27me3 H3K36me3 H3K4me1

H3K27ac H3K4me3

Chromatin variation across individuals (aggregated): Integration vs Single assay

Correlation of K27 Signal

		ENC-001	ENC-002	ENC-003	ENC-004
HS	ENC-001	161005	108157 (67%)	116780 (73%)	57606 (36%)
al D	ENC-002	108493 (69%)	156610	104568 (67%)	62256 (40%)
Dist	ENC-003	116976 (75%)	104364 (66%)	156961	57176 (36%)
	ENC-004	58353 (37%)	63135 (40%)	57818 (36%)	159323

Transverse Colon

Corr. of Integrated Crosssignal Score (MF Lin.

Combo)

Methods of integration (chromHMM)

EN-TEx ChromHMM segmentation: one donor, 10 tissues

H3 K4 me3	H3 K4 me1	H3 K27 ac	H3 K36 me3	H3 K27 me3	H3 K9 me3	Genome coverage %	Exons	TSS +/- 2kb	Chromatin State
0	0	0	0	0	0	75.5	0.5	0.5	Quiescent
0	0	0	0	1	45	1.6	0.7	0.4	Heterochromatin
98	4	98	0	1	0	0.7	9.0	23.5	Active Promoter
79	7	9	0	2	0	0.3	5.1	16.5	Inactive Promoter
97	87	99	0	1	0	0.2	4.2	16.9	Active Flanking Promoter
90	82	7	0	2	0	0.1	5.0	19.6	Inactive Flanking Promoter
87	31	88	1	73	4	0.03	8.5	19.4	Active Bivalent Promoter
62	41	1	1	84	5	0.11	8.5	16.6	Inactive Bivalent Promoter
0	0	0	0	33	0	0.8	2.6	5.7	Polycomb Silenced Promoter
3	74	93	1	0	0	1.0	1.6	2.5	Active Enhancer
0	48	6	0	0	0	1.0	1.3	3.2	Inactive Enhancer
37	55	90	80	0	0	0.04	11.7	5.4	Active Exonic Enhancer
4	49	9	68	0	0	0.03	8.8	3.5	Inactive Exonic Enhancer
0	0	0	76	0	0	2.5	5.9	0.7	Strong Transcription
0	0	0	3	0	0	12.0	2.1	1.0	Weak Transcription
1	3	58	75	0	0	0.14	8.1	1.2	H3K27ac + H3K36me3
4	0	1	70	0	80	0.12	7.6	0.9	H3K9me3 + H3K36me3
1	6	65	0	0	0	1.9	1.3	2.4	H3K27ac

One of the most comprehensive datasets of consistent collection of histone modifications for multiple individuals and tissues allows better chromatin segmentation

GWAS variants in "cholesterol" studies

83 studies; 1,183 SNPs; 680 unique SNPs

[Alex Dobin]

Landscape of EN-TEx transcription

Tissue-specificity of gene vs pseudogene expression

Comparing chromatin activity with gene expression

Gene expression level (TPM bins)

Reference Component Analysis (RCA)

Projections

Applied to EN-TEx data, giving consistent transcriptome v epigenome comparison

Application of Avocado to the ENTEx Dataset

910 sample imputations from Avocado (Deep learning mod Histone modifications + CTCF + RNApol II

3. Detailed Effect of Specific Genomic Variantsfrom the Personal Genome

Diploid personal genomes: Effect of variants on Gene Expression

Genes quantified differently when mapped to diploid personal genome compared to the reference genome

ENC-002 stomach (p_r=0.99; s_r=1) ٠ 1e+05 log10(TPM+0.001) Diploid e+02 1e-01 Reference non-expressed 1e-01 1e+02 1e+05 Diploid log10(TPM+0.001) Reference non-expressed

complete overlap with gene partial overlap source of the second second

Effect of deletions on gene expression

- 728 (252 protein-coding) genes quantified differently
- Examples of protein-coding genes:
 - with significantly higher expression across multiple tissues in personal genome: HLA-DRB1, HLA-DQA1, HLA-DQB1, IGHV4-31
 - in the reference genome: NBPF26, UGT2B15, HLA-DRB5, AC073333.1, RP11-514P8.6, FOXD4L3, NANOG, CTD-3126B10.5, RIMBP3

Anna Vlasova, Roderic Guigo, Thomas Gingeras

Functional elements are depleted in SVs

Calculated partial (1bp) and complete overlap between SVs and genomic elements

Generating a catalogue of SNVs, genes, & binding sites associated with allelic activity across different tissues

Counts of ASE hetSNVs and genes and ASB peaks; all tissues ENC-003

protein coding other

TCF ■ POLR2AphosphoS5 □ H3K27ac ▽ H3K36me3 × H3K4me3 OLR2A ▲ EP300 ○ H3K27me3 + H3K4me1 ◇ H3K9me3

Developing an integrated cross element (1), individual (2) & tissue (3) ASE and ASB annotation for genomic features (genes & ccREs)

ASB (H3K27ac) in ccREs across ENC-003 tissues

ASE in protein-coding genes across ENC-003 tissues

ENC-003 stomach

Using personal genomes alleviates reference mapping bias

Reference Genome

Personal Genome NA12878

alternative allele ratio

(fraction of RNA-Seq reads mapping to alternative allele per heterozygous SNP)

Personal Genome ENC-003; all RNA-seq samples

alternative allele ratio

EN-TEx Summary

- High-quality assembly of personal genomes from integration of long & short read sequencing
 - Determination of many types of SVs
 - Matched data matrix almost filled in
- 2) Great variation of raw transcriptome & epigenome data across individuals and tissues
 - Assay integration gives a more stable picture for epigenetics across individuals
 - Pseudogenes are more tissue specific than genes
- 3) Personal genomic variants have clear impact on transcription
 - Generating a catalogue of allelic elements and genes, by integrating across individuals and tissues

Future Directions for the EN-TEx Analysis

- Variation in 3D organization of genome across tissues and individuals
 - \circ loops
 - domains
 - compartments
- Allele-specific Hi-C
- Variation in methylation across tissues and individuals
- Allele-specific methylation

HudsonAlpha Institute Richard M. Myers Lab Stanford University J. M Cherry Lab I. Gabdank DCC M. Snyder Lab

<u>Broad Institute</u> Bradley E. Bernstein Charles B. Epstein

Baylor College of Medicine Erez L. Aiden Lab Salk Institute

Joseph R. Ecker Lab

Yale University Mark B. Gerstein Joel Rozowsky Fábio C. P. Navarro Gamze Gursoy Timur R. Galeev Mengting Gu Yucheng T. Yang

Chengfei Yan

EN-TEX

Berkeley National Laboratory Len A Pennacchio Lab

<u>California Institute of Technology</u> Barbara Wold Lab

Pennsylvania State University Ross Hardison Lab

University of California San Diego Bing Ren Lab

Cold Spring Harbor Laboratory Thomas Gingeras Alexander Dobin Jorg Drenkow Cassidy Danyko Jesse Gillis Carrie A. Davis Chris Zaleski Alex Scavelli NHGRI (funding agency) Mike Pazin **Elise Feingold** Dan Gilchrist **Michael Pagan Eileen Cahill**

Center for Genomic Regulation Roderic Guigo Julien Lagarde Anna Vlasova Alessandra Breschi Sarah Diebali Dimitri Pervouchine University of Connecticut **Brenton Graveley Lab** University of Washington John A. Stamatoyannopoulos Rajinder Kaul Jacob Schreiber **Bill Noble** University of Massachusetts Zhiping Weng Jill Moore Henry Pratt University of California, Irvine Ali Mortazavi Rabi Murad Johns Hopkins University Michael Schatz Fritz Sedlazeck Han Fang Maria Nattestad

PERSONALIZED GENOMES

3D-DNA: AUTOMATIC 3D DE NOVO GENOME ASSEMBLY

JUICEBOX ASSEMBLY TOOLS

Dudchenko et al., Biorxiv, 2018

HERE IS A HUMAN GENOME WE MADE FOR \$1000

Dudchenko et al., bioRxiv 2018

END-TO-END (GAPPY) ASSEMBLY: \$1000 PLATINUM ASSEMBLY: ~\$20K

AaegL4:

Sanger DNA-Seq + Illumina Hi-C

Contig NG50: 82 Kb

Number of gaps: 25,582

Dudchenko et al., Science, 2017

AaegL5:

PacBio DNA-Seq + Illumina Hi-C

Contig NG50: 11.8 Mb

Number of gaps: 173

Matthews, Dudchenko, Kingan et al., Nature, 2018

OPPORTUNISTIC PROJECT (\$0!): ENTEX 002 & ENTEX 003

OPPORTUNISTIC PROJECT (\$0!): HI-C DATA YIELDS GENOME-WIDE SNP CALLING

 10^{2}

 10^{9}

 10^{10}

 10^{11}

Olga Dudchenko (see also work by Gamze Gursoy, Mark Gerstein)

ENCODE4 PILOT PROJECT (\$1000): PGP1 & HEPG2

Data generation in progress

Nir et al., Nature Genetics 2018

QUESTIONS FOR DISCUSSION

- What is the value of the personal genome & having functional genomic assays matched to it?
- How to think about genomic element calls relative to substantial epigenetic variation across individuals?
- How best to fill out the EN-TEx data matrix in the coming months?
 - What types of integrated calculations are best done over the EN-TEx matrix?
- How to best include opportunistic Hi-C personalized genome data into ENCODE?
- Should we prioritize additional reference cell lines & samples for *de novo* genome assembly efforts?
 - Backfilling? (K562, IMR90, HCT-116, HMEC, NHEK etc.)
 - EN-TEx 1&4?