
1. Experience in analysis of omics data
1.1	Experience in transcriptomics
We have extensive expertise performing transcriptome analyses, developing a wide range of customized tools, and building standardized pipelines for analysis and uniform processing of both long and short RNA-sequencing (RNA-Seq) data. These tools have been evaluated and implemented in several major consortia.

For general RNA-Seq analysis, we have developed an efficient in-house data processing workflow for long RNA-Seq data that includes data organization, format conversion and quality assessment. RSEQtools (http://rseqtools.gersteinlab.org) is a computational package that enables users to quantify the expression of annotated RNAs and identify splice sites and gene models [1]. Comparisons between RNA-Seq samples, and to other genome-wide data, are facilitated by our Aggregation and Correlation Toolbox, which compares genomic signal tracks [2]. We developed incRNA [3] to predict novel non-coding RNAs (ncRNAs) using known ncRNAs of various biotypes. We created FusionSeq to detect transcripts that arise due to trans-splicing or chromosomal translocations [4]. We also constructed IQSeq [5], which calculates the relative and absolute abundance of contributing transcript isoforms to a gene from RNA-Seq data. We developed the AlleleSeq tool [6] that combines diploid genomic information with RNA-Seq data to identify transcripts showing allele-specific expression. We have further developed Pseudo-seq [7] and PseudoPipe [8] to address the issue of quantification of pseudogene expression.

We recently developed the extracellular RNA (exRNA) processing toolkit (Submitted) available at http://github.gersteinlab.org/exceRpt, which includes a set of tools and a pipeline designed for comprehensive analysis of small RNA-Seq datasets. We specifically designed exceRpt to handle technical issues that are often characteristic of small RNA-Seq samples, such as read preprocessing, filtering and alignment, biotype abundance estimation, visualization and quality assessment. The exceRpt pipeline has been used for uniform processing of hundreds of RNA-Seq datasets submitted to the exRNA Atlas (http://exrna-atlas.org) repository.

We have extensive experience conducting integrative analyses of large sets of RNA-Seq data. We have developed and analyzed multiple RNA-Seq flows in the context of large consortia, and have implemented both tools that we developed and other popular tools such as Bowtie [9] and Tophat [10]. 

1.2	Experience in proteomics
We have substantial experience analyzing proteomic data [11-13] and integrating it with genomic data. For example, to combine mass spectrometry (MS) proteomic and transcriptomic data [14, 15], we constructed a web tool called PARE (Protein Abundance and mRNA Expression; http://proteomics.gersteinlab.org) [16]. We also published the tool Empire [17], which uses transcript-level RNA-Seq expression as a prior likelihood and enables users to directly estimate protein isoform abundances from liquid chromatography MS/MS (LC–MS/MS), an approach derived from the principle that most genes appear to be expressed as a single dominant isoform in a given cell type or tissue. We have also led studies interpreting protein-protein interactions based on data from proteomic experiments [18, 19]. We have been members of numerous NIH proteomics projects and consortia, including the Northeast Structural Genomics Consortium, the National Heart, Lung and Blood Institute Proteomics Center and the Yale/National Institute on Drug Abuse Neuroproteomics Center, and have conducted analyses on the various types of large-scale proteomic data generated by these consortia [12, 20].

1.3	Experience in metabolomics
We have demonstrated that metabolic phenotypes of response to vaccination in humans revealed strong association between plasma metabolomics and PBMC transcriptomics and concluded that metabolomic phenotypes, such as inositol phosphate metabolism, influence immune outcome [21].  We also took a systems biology approach to integrate existing knowledge and novel high-throughput data that facilitates a quantitative understanding of the molecular mechanism of ω3- and ω6-PUFA metabolism in mammalian cells[22]. Additionally, the UCSD Center for Computational Biology and Bioinformatics (CCBB) collaborated on a recent metabolomics analysis of rheumatoid arthritis [23]. We will apply these proven methodologies to the identification of acute-to-chronic pain signatures and the associated mechanisms. 

1.4	Experience in lipidomics
The UCSD LIPID MAPS Lipidomics Core (http://www.ucsd-lipidmaps.org) aims to develop the field of lipidomics, especially studies focused on targeting bioactive lipid mediators and developing biomarkers[24]. The complexity of the lipidome both in its dynamic range and structural diversity represents a major analytical challenge. To address these challenges, the LIPID MAPS Consortium is quantifying all lipid species of the mammalian lipidome. We established the first comprehensive human lipid profile in plasma and identified and quantified 600 distinct lipid molecular species across all mammalian lipid categories [25]. We profiled activated macrophages immunologically, measured over 500 discrete lipid species and mapped associated pathways, integrating transcriptomics, proteomics and lipidomics [26]. We now routinely profile various tissues of both human and animal origin for biomarker discovery and for indicators of abnormal lipid metabolism. More recently, we established lipid profiles of liver biopsy specimen and plasma from individuals with non-alcoholic fatty liver disease for biomarker development [27]. We used similar approaches to identify eicosanoid targets in various bacterial and viral infectious diseases including Lyme disease and influenza [28, 29]. Our lipidomics platform for monitoring over 200 oxidation and signal transduction consequences is the most developed platform to emerge in the metabolomics area [30-33].

2. Experience in design and implementation of analytical tools
2.1	Tools for identifying transcriptomic signatures
We will leverage our extensive experience processing and analyzing transcriptomic data to address the aims of the DIRC DIAC. In previous work, we evaluated several independent computational methods and protocols for exon identification, transcript reconstruction and expression level quantification from RNA-Seq data [34]. Our results characterize the strengths and weaknesses of these methods, which would aid the design of analytical strategies. 
Following transcriptomic data processing, we can conduct several downstream analyses to identify the functional and regulatory implications of the observed gene expression patterns. We developed a computational method called DREISS for analyzing the “Dynamics of gene expression driven by Regulatory networks, both External and Internal, based on State Space models” [35]. DREISS employs dimensionality reduction to help identify canonical temporal dynamics (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. Another such tool, Loregic, computationally integrates gene expression and regulatory network data to characterize the cooperativity of regulatory factors [36]. Loregic uses all 16 possible two-input-one-output logic gates (e.g., AND or XOR) to describe triplets of two factors regulating a common target. The tool finds the gate that best matches each triplet’s observed gene expression pattern across many conditions. Loregic is able to characterize complex circuits involving both transcription factors (TFs) and miRNAs. Additionally, we can exploit cross-species data by using OrthoClust, a computational framework for simultaneously clustering data across multiple species [37]. This tool integrates the co-association networks of individual species by utilizing the orthology relationships of genes between species, and then outputs optimized cross-species modules, either conserved or species specific. A potential application of cross-species modules is to infer putative analogous functions of uncharacterized elements like ncRNAs based on guilt-by-association.

2.2	Tools for the deconvolution of bulk data
Deconvolution refers to the decomposition of a dataset into its constituent components. In exRNA studies, deconvolution methods can help us identify fractions in the bulk expression data and their characteristic expression patterns. We have previously employed several deconvolution analysis methods that can be integrated into the exRNA pipeline, in order to specify subtypes of cells associated with signatures of interest. 
We have employed two approaches to the bulk tissue deconvolution (Submitted): an unsupervised approach called non-negative matrix factorization (NMF) and a supervised approach called cell-signature-based decomposition. Given the number of desired components, the bulk tissue gene expression matrix X is decomposed into the product of two matrices: H represents NMF "top components" (NMF-TCs) and V represents the expression level of genes in the NMF-TCs. We found that NMF-TCs recovered the expression patterns of different cell types in bulk RNA-Seq data on brain cell population. We then applied a supervised approach that uses single-cell expression signatures to find the fractions of different cell types. We defined the sample gene expression matrix B, and fraction gene expression matrix iC. We used the non-negative least square method to find a non-negative matrix W as the linear combination coefficients. By applying this method to bulk RNA-Seq data on a brain cell population, we identified cell-fraction changes associated with different traits.

2.3	Tools for network analysis & visualization 
We have demonstrated experience in biological network science. After we identify the functional and regulatory networks using the aforementioned pipelines and tools, we will quantify and visualize the properties of these networks to identify possible signatures of dysregulation in the transition from acute to chronic pain.
Our lab has developed various tools for network analysis from multiple perspectives. We and others have used these tools to analyze the human regulatory network [38], the phosphorylation network in yeast [39],  the yeast regulatory network [40] and other model organism networks [41]. We have performed and published extensive comparisons between these regulatory networks [42].
TopNet is an automated web tool designed to calculate topological parameters and compare different sub-networks for any given network [43]. This tool computes a variety of topological parameters given the input network and specified subnetworks and calculates the power-law degree distribution for each sub-network. In addition, we developed the TopNet-like Yale Network Analyzer, a web system for managing, comparing and mining multiple networks, which efficiently implements methods that are useful in network analysis [44]. 
We have also published several papers on constructing hierarchy structures for the regulatory network for both transcriptional and post-transcriptional regulation. We proposed the hierarchical score maximization algorithm, which first defines a score to quantify the degree of hierarchy in a network, and then performs a simulated annealing procedure to infer a hierarchical structure that maximizes the score [41]. We applied our algorithm to determine the hierarchical structure of the phosphorylome in detail. Using genome-wide binding locations of human, worm and fly transcription-regulatory factors (RFs), we performed simulated annealing to reveal the organization of RFs in three layers of master regulators, intermediate regulators and low-level regulators [45]. We organized the binding profiles of 119 TFs in 458 chromatin immunoprecipitation sequencing (ChIP-Seq) experiments from ENCODE into a hierarchy and integrated it with other genomic information (e.g., miRNA regulation), forming a dense meta-network [38]. 

3. Experience in consortium analyses
3..1	Experience in consortium analyses for general genomics
3.1.1	Integrative analysis of consortium-wide datasets 
We played a lead role in the integrative analysis of multi-omic datasets from the [38, 45-48] and modENCODE [48, 49] consortia. By integrating large-scale RNA-Seq and ChIP-Seq datasets from ENCODE, we developed statistical models to quantify the relationship between gene expression and TF binding and/or chromatin modification signatures [50, 51]. We have also developed approaches for constructing and studying biological networks that can be applied to analyze ENCODE datasets. We integrated multiple genomic datasets to construct gene regulatory networks consisting of various regulatory factors including TFs and miRNAs and their target genes [38, 45, 52]. For constructed gene regulatory networks, we developed methods to construct and analyze human and model organism gene regulatory networks [38, 42, 49, 52, 53] using ENCODE and modENCODE datasets. We also analyzed hierarchical structures of gene regulatory networks and found that hierarchy rather than centrality ("hubiness") better reflects the importance of regulators [38, 54-57].
We helped lead the structural variation (SV) analysis for the 1,000 Genomes Project [58-60]. We developed an annotation pipeline that maps single-nucleotide polymorphisms, insertions and deletions (indels) and SVs onto protein-coding genes[61]. We also developed algorithms to identify indels and SVs based on split-read, read-depth and paired-end mapping methods. We studied the distinct features of SVs originating from different mechanisms [62]. We performed SV mechanism annotations for the 1,000 Genomes Project Phase 3 deletions using BreakSeq [62].
We have been an integral part of the Data Integration and Analysis Component (DIAC) for the  Data Management and Resource Repository (DMRR) for the NIH Common Fund Extracellular RNA  Communication Consortium [63, 64].
In addition, we participated in the United States Department of Energy Systems Biology Knowledgebase [65], which is an open-source software and data platform that enables data sharing, integration and analysis of microbes, plants and their communities; and the Northeast Structural Genomics Consortium [66], which employs both X-ray crystallography and NMR spectroscopy to provide novel structural information useful in modeling thousands protein domains.

3.1.2	Integrative analysis of omics datasets with genomic variants
We have extensively analyzed patterns of variation [38, 67, 68]. In recent projects [59, 69], we integrated multiple methods into a comprehensive prioritization pipeline called FunSeq (Figure 7). The pipeline identifies sensitive regions with annotations under high selective pressure, links non-coding mutations to their target genes and prioritizes variants based on network connectivity. Recently, we developed RADAR by extending the FunSeq variant prioritization framework to the RNA transcript (In press). RADAR integrates the ENCODE enhanced CLIP datasets, Bind-n-Seq datasets and RBP KD RNA-Seq datasets to reconstruct a comprehensive post-transcriptional network. By combining other genomic information including conservation and motif features, RADAR can pinpoint deleterious variants, such as splicing-disruptive ones, that may be missed by other methods. Finally, we developed a computational tool to systematically annotate upstream open reading frames (uORFs) in the genome [70]. We applied this tool to predict the consequences of genomic variants and somatic mutations on uORFs.
Additionally, we have developed a variety of tools that prioritize protein-coding variants. The Variant Annotation Tool characterizes variants according to affected genes and transcript isoforms [71], and the Analysis of Loss of Function Transcripts tool predicts loss-of-function mutations and their impact [61]. Related, our NetSNP biological network integration tool [72] identifies cancer genes based on connectivity. STRESS [73] and Frustration [74] are two other tools we built to identify mutations that affect allosteric hotspots in proteins and identify key functional protein regions prone to genetic alterations. Our Intensification tool searches for deleterious mutations within repeat regions of proteins [75].

3.2	Experience in consortium analyses for disease genomics

3.2.1	Brain diseases
We played a lead role in the data analysis for the PsychENCODE Consortium [76, 77], a project aimed at understanding regulatory variants in the context of their functional connections to psychiatric disorders, with several papers currently in the revision stage (Submitted). In our recent work, we identified functional elements, multiple QTLs and regulatory-network linkages specific to the adult brain by integrating data from the PsychENCODE Consortium together with relevant external data sources from ENCODE, CommonMind, GTEx and Roadmap (Submitted). In addition to the adult brain, we assessed the degree of chromatin differences between developmental stages relative to that between tissues. Furthermore, we used the regulatory network based on Hi-C, QTLs and activity relationships to connect non-coding genome-wide association study loci to potential psychiatric disease genes including schizophrenia, autism, bipolar disorder and Alzheimer's disease. We also participate in the BrainSpan Consortium, which aims to create a comprehensive map of gene expression and to understand how the human brain changes throughout life. We analyzed large amounts of RNA-Seq data to characterize the transcriptome of the human brain during development [78]. 
Particularly, we developed an integrated and interpretable deep-learning model, the Deep Structured Phenotype Network (DSPN), that can predict psychiatric disorders using genotype and functional genomic data (Submitted). The model used a Deep Boltzmann Machine (DBM) architecture [79] and included layers for intermediate molecular phenotypes (expression and chromatin state) and pre-defined gene groupings (cell-type markers and co-expression modules), multiple higher layers for inferred groupings (hidden nodes), and a top layer for observed traits (psychiatric disorders and other phenotypes). Finally, we used sparse inter- and intra-level connectivity to integrate QTLs, regulatory networks and co-expression modules.

3.2.2	Cancer
In addition to neurogenomics and psychiatric diseases, we also have focused on cancer through our role in analyzing data for the Pan-Cancer Analysis Working Group (PCAWG) Consortium [80, 81] and our participation in the cancer genome atlas (TCGA) prostate adenocarcinoma and kidney chromophobe projects [82-84]. We are co-leaders of the PCAWG-2 group, and participate in the analyses of the PCAWG-3, 8 and 11 groups. We leveraged our expertise in non-coding regions in the first whole-genome analysis of TCGA kidney renal papillary cell carcinoma (KIRP) samples, in which we found significant genomic non-coding alterations beyond traditional known drivers of KIRP located within coding exons [82].
We also developed a variety of tools for integrative analysis of cancer genomics data. We developed LARVA, a statistical method for identifying significant mutation enrichments in non-coding elements [85]. Furthermore, we developed MOAT, an alternative empirical mutation burden approach that evaluates mutation enrichments based upon permutations of the input data [86]. 
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