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In cancer, complex interactions between alterations associated with 
multiple genes can lead to cooperative, more deleterious e�ects 
facilitating progression of the disease. Such epistatic relationships 
might also vary across cancer types. To this aim, we investigate the 
co-occurrence of rare somatic and germline variation (SGV) at 
pan-cancer and cancer-specific scales, a question that has never been 
investigated at the whole genome level [1, 2]. We train deep neural 
networks to predict somatic-germline variation co-occurrence at the 
gene level. Networks are trained on data from the 2800 cases in the 
PanCancer Analysis of Whole Genomes (PCAWG) of the International 
Cancer Genome Consortium (ICGC) consortium, and they are capable 
of identifying key biological features that would contribute to co-oc-
curring SGV. Ongoing work will further unfold the genetic patterns of 
SGV co-occurrence and further prioritize genes involved in this type of 
variation. 
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Data. PCAWG genomic variant data are used to train networks for our 
analysis. Somatic and germline rare variants (VAF < 0.05%) are singled 
out for 9 cancer types: Liver hepatocellular carcinoma, Skin Melano-
ma, B-cell Non-Hodgkins Lymphoma, and Pancreatic, Prostate, Breast, 
Ovary and Esophageal Adenocarcinomas, with SGV co-occurrence 
calculated at the gene level using Funseq2 annotation.

Training. The predictive task according to which the neural networks 
have been trained is the detection of somatic and germline variation 
co-occurrence at the gene level for the 718 COSMIC census genes 
fetched on May 08, 2018. Input data include 43 features ranging from 
germline variant signatures of known cancer genes alongside a set of 
biological features extracted from multiple data and annotation 
repositories, namely COSMIC, UCSC Genome Browser and Gencode 
v27, generating more than 850,000 data points. Automated hyperpa-
rameter optimization and rigorous data balancing are performed 
using HyperOpt [3] and Imbalanced-learn [4], respectively.

Results.  Trained networks across cancer types achieved 
precision values in [0.7, 0.86] and weighted harmonic mean of 
precision and recall, F-beta score, in [0.74-0.89] over 5 runs with 
random selection at the gene level for each cancer type. Prelimi-
nary feature prioritization led to cancer specific ranked lists of 
biological features and germline genes’ contribution to SGV. 

Cancer Type Samples COSMIC genes Dataset Size 0-1 Label Imbalance (%)

Liver-HCC 309 679 209,811 98.53-1.57%

Panc-AdenoCA 230 619 142,370 98.86-1.14%

Prost-AdenoCA 197 463 91,211 99.30-0.70%

Breast-AdenoCa 189 636 120,204 98.72-1.28%

Kidney-RCC 140 578 80,920 98.68-1.32%

Ovary-AdenoCA 109 575 62,675 98.36-1.64%

Lymph-BNHL 104 561 58,344 98.00-2.00%

Eso-AdenoCa 94 605 56,870 97.37-2.63%

Skin-Melanoma 90 685 61,650 92.36-7.64%
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