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Thoughts on 
Genome 

Annotation, 
Prioritizing
Variants & 

the Application 
of these 

Concepts in a 
Disease Context

Mark Gerstein
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Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @MarkGerstein). 
No Conflicts for this Talk. See last slide for more info.
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of	variants	in	a	personal	genome
Thousands,	in	a	cancer	genome
Different	contexts for	prioritization

In	rare	disease,	only	a	few	
high-impact	variants	are	associated	with	disease	

In	cancer,	a	few	positively	selected	drivers	amongst	many	passengers

In	common	disease,	more	variants	associated	&	each	has	weaker	effect,		
But	one	wants	to	find	key	”functional”	variant	amongst	many	in	LD	

CAN YOU FIND THE PANDA?
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of	variants	in	a	personal	genome
Thousands,	in	a	cancer	genome
Different	contexts for	prioritization

In	rare	disease,	only	a	few	
high-impact	variants	are	associated	with	disease	

In	cancer,	a	few	positively	selected	drivers	amongst	many	passengers

In	common	disease,	more	variants	associated	&	each	has	weaker	effect,		
But	one	wants	to	find	key	”functional”	variant	amongst	many	in	LD	

Thus:	Need	to	find	&	prioritize	high	impact	variants.	
Particularly	hard	for	non-coding	regions.

CAN YOU FIND THE PANDA?
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Non-coding Annotations: Overview
Features are often present on multiple ”scale” (eg elements and connected networks)

Sequence features, incl. Conservation Functional Genomics
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription
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What is Annotation? (For Written Texts?)
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Power, as an issue in driver discovery 

Better 
annotation or 
large number 
of samples 
could help.
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Background on computationally annotation

• Peak calling:
üPeakSeq, SPP, MACS2, Hotspot …

üENCODE Encyclopedia

• Genome segmentation: partition the genome into regions (states) with distinct
epigenomic profiles, then assign each state a functional label.

üChromHMM: Multivariate Hidden Markov Model

üSegway: Dynamic Bayesian Network Model

• Supervised regulatory prediction: learn predictive models from  labeled  dataset of 
regulatory elements.

ü CSI-ANN: Time-Delay Neural Network

ü RFECS: Random Forest

ü DEEP: Ensemble SVM + Artificial Neural Network

ü REPTILE: Random Forest

ü gkm-SVM: Gapped k-mer

• Target finding
ü Ripple, TargetFinder, JEME, PreSTIGE, IM-PET

C
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J. Ernst, M. Kellis. Nat. Protoc., 2017

H.A. Firpi, D. Ucar, K. Tian. Bioinformatics, 2010
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High-throughput approaches to dissect enhancer function

MPRA

Patwardhan RP, et al., Nat Biotech, 2009
Melnikov A, et al., Nat Biotech, 2012
Kheradpour P, et al, Genome Res, 2013
Birnbaum RY, et al, PLoS Genet, 2014

STARR-Seq

Arnold, CD, et al., Science, 2013
Arnold, CD, et al., Nat Genet, 2014
Shlyueva, D, et al, Mol Cell, 2014

MPFD

Patwardhan RP, et al., Nat Biotech, 2012

CRE-Seq

Kwasnieski JC, et al, PNAS, 2012
White MA, et al, PNAS, 2013
Kwasnieski JC, et al, Genome Res, 2014

Fumitaka and Ahituv, Genomics, 2015 TRIP

Akhtar, W, et al., Cell, 2013
FIREWACh

Murtha, M, et al., Nat Methods, 2014

SIF-Seq

Dickel, DE, et al., Nat Methods, 2014
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Genetic variant annotation: coding and noncoding

• Tools developed specifically for coding variants:
üPolyPhen-2
üSnpEff
ü SIFT
ü...

• Tools developed specifically for noncoding variants:
üRegulomeDB
üHaploReg
üDeepSEA
üGWAVA
ü...

• Tools for both coding and noncoding variants:
üCADD
üANNOVAR
üVEP
üFATHMM-MKL
ü ….

Po
ly

ph
en

-2

I.A. Adzhubei, et al. Nat. Methods,  2010

D
ee

pS
EA

J. Zhou, O.G. Troyanskaya, Nat. Methods, 2015



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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Summarizing the Signal: 
"Traditional" ChipSeq Peak Calling

Threshold

•Generate & threshold the 
signal profile to identify 
candidate target regions

- Simulation (PeakSeq), 

- Local window based Poisson 
(MACS), 

- Fold change statistics (SPP)

• Score	against	the	control

Potential	Targets

Significantly	Enriched	
targets

Normalized	Control

ChIP

Now	an	update:	"PeakSeq	2"	=>	MUSIC
[Rozowsky et al. ('09) Nat Biotech]
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[Harmanci et	al,	Genome	Biol.	('14)]



1
8

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Multiscale	Decomposition

In
cr
ea
sin

g	
Sc
al
e

20kb
Very

Punctate
ER

Broad
ER

Broader
ER

Very	Broad
ER

Punctate
ER

[Harmanci et	al,	Genome	Biol.	('14)]



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.



2
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Unique shape associated histone signals flanking 
active enhancers identified through STARR-seq

Nature Reviews | Genetics
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Figure 3 | Genomic methods for predicting enhancers through the detection of transcription factor binding, 
‘open’ chromatin, chromatin marks, or long-range contacts. The principles of the different methods (top panel 
of each part) and the corresponding data output (such as deep sequencing read density) that is used for regulatory 
element identification (bottom panel of each part) are shown. a | Chromatin immunoprecipitation followed by 
deep sequencing (ChIP–seq) uses antibodies to determine the location of transcription factor (TF) binding sites 
genome wide. Although enhancers are bound by TFs, not all TF binding sites correspond to functional enhancers.  
b | Active enhancers and other regulatory elements are depleted of nucleosomes such that the DNA is accessible. 
Such regions can be detected by DNase I or micrococcal nuclease (MNase) digestion followed by deep sequencing 
(DNase-seq or MNase-seq, respectively). c | Nucleosomes that flank active enhancers bear characteristic histone 
modifications that can be detected by ChIP–seq using specific antibodies. d | Enhancers are brought into close 
proximity of their respective target promoters through the formation of chromatin loops, which are thought to be 
established by cohesin and Mediator complexes. ChIP–seq can detect the contact points of cohesin and Mediator 
at promoters and enhancers, and has been used to predict enhancers. e | Chromatin interaction analysis with 
paired-end tag sequencing (ChIA–PET) and chromosome conformation capture (3C)-based methods preserve and 
detect spatial contacts by crosslinking, DNA fragmentation, DNA fragment ligation and deep sequencing. ChIA–
PET includes a ChIP step to enrich for complexes that contain a specific protein, such as RNA polymerase II (Pol II). 
In contrast to ChIP–seq (part d), both ChIA–PET and 3C-based methods detect not only the contact points but also 
the pairwise connections between these points. The thin, solid lines indicate that pairwise connections between 
spatial contact points are captured in ChIA–PET and 3C-based methods. For 3C-based methods a schematic 
output of a chromosome conformation capture carbon copy (5C) or Hi-C experiment is shown; this method probes 
all interactions between defined genomic loci for their spatial proximity and physical contacts, which is similar to 
ChIA–PET in that it might (solid lines) or might not (dashed lines) correspond to regulatory interactions.

REVIEWS

6 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/genetics
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Matched Filter recognize shape patterns

Matched Filter

Score STARR-seq regulatory regions VS random negatives

H3K4me3 H3K4me1

Evaluate using ROC curve

[ biorxiv.org/content/early/2018/08/05/385237 ]



2
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Integrate matched filter scores of multiple features

Cross validation

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage sample

A
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P
R

 v
al

ue

H3K27ac

H3K4me1

H3K4me2

H3K4me3

H3K9ac

DHS

SVM

Large scale STARR-seq experiment data helps
to improve the performance of integrated model

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Inject fertilized eggs

Validation with transgenic mouse enhancer assay

False Positive Rate
[ biorxiv.org/content/early/2018/08/05/385237 ]
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GM12878

HepG2

K562

0.0 0.1 0.2 0.3 0.4
Percentage of FANTOM5 enhancers overlapped

Matched-Filter

ChromHMM+Segway

0.000.050.100.15
Percentage overlapped with FANTOM5 enhancers

Validation using
transduction-based
reporter assay (H1-hESC,
HOS, A549 and TZMBL)

Compare overlap with
FANTOM5 enhancers

Matched-Filter can be applied across different organisms

Compare Matched-Filter
performance with other state-
of-the-art methods

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Constructing a high-confidence set of cell-specific enhancers 



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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Funseq: a flexible framework to determine 
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
position) [F

u 
et

 a
l.,

 G
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eB
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gy
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, ,
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ra
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on

Production ENCODE & 1000G Phase 1

(Non-coding	RNA)

(DNase	I	hypersensitive	sites)

Depletion	of	Common	Variants
in	the	Human	Population

Broad	categories	of	
regulatory	regions	under	

negative	selection
Related	to:
ENCODE,	Nature,	2012

Ward	&	Kellis,	Science,	2012
Mu	et	al,	NAR,	2011

(Transcription	factor	binding	sites)

(TFSS: Sequence-specific TFs)
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Differential 
selective 
constraints
among specific 
sub-categories

Sub-categorization possible 
because of better statistics from 
1000G phase 1 v pilot [Khurana	et	al.,	Science (‘13)]
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SNPs which break TF motifs are under stronger selection

[Khurana	et	al.,	Science (‘13)]
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Hubs Under Constraint: 
A Finding from the Network 

Biology Community

•More Connectivity, More Constraint: Genes & proteins that have a more central 
position in the network tend to evolve more slowly and are more likely to be 
essential. 

•This phenomenon is observed in 
many organisms & different kinds of networks

-yeast PPI - Fraser et al ('02) Science, 
('03) BMC Evo. Bio.
-Ecoli PPI - Butland et al ('04) Nature 
-Worm/fly PPI - Hahn et al ('05) MBE 
-miRNA net - Cheng et al ('09) BMC Genomics

[Nielsen et al. PLoS Biol. 
(2005), HPRD, Kim et al. 
PNAS (2007)]

High likelihood of 
positive selection
Lower likelihood of 
positive selection

Not under positive 
selection
No data about 
positive selection

log(Degree)

lo
g(

Fr
eq

ue
nc

y)

Power-law distribution

Hub
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FunSeq.gersteinlab.org
HOT	region

Sensitive	region
Polymorphisms

Genome

• Info. theory based method (ie
annotation “surprisal”) for weighting 
consistently many genomic features

• Practical web server 
• Submission of variants & pre-

computed large data context from 
uniformly processing large-scale 
datasets

[Fu et al., GenomeBiology ('14)]
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relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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RNA Binding Proteins (RBPs)

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

Nat Rev Mol Cell Biol. 2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

• Before ENCODE3: >150 expt. 
in many different cell types 

• ENCODE3 did ~350 focused eCLIP expt. 
for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16; 
Van Nostrand...Graveley, Yeo 
(submitted in relation to ENCODE3))
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[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

Schematic of RADAR Scoring
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[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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High Phastcon in RBP-overlapped annotations RNA Structure Cons. from Evofold

Enriched rare DAF in eCLIP peaks

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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Co-binding of RBPs form biologically relevant complexes

Binding hubs are enriched for rare variants

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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Validation for Somatic Variants:
RADAR Scores enriched in COSMIC genes & recurrently mutated regions 

+ higher for tissue matched context



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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Upstream open reading frames (uORFs) regulate 
translation are affected by somatic mutation

● uORFs regulate the translation of downstream 
coding regions.

● This regulation may be altered by somatic 
mutation in cancer.

● In Battle et al. 2014 data uORF gain & loss 
assoc. protein level change.

[Ferreira et al., Bioengineered (‘14)]

[McGillivray	et	al.,	NAR	(‘18)]

[Calvo et al., PNAS (‘09)]
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The population of functional 
uORFs may be significant

● Ribosome profiling experiments have 
low overlap in identified uORFs. 

● This suggests high false-negative rate, 
and more functional uORFs than 
currently known.

[McGillivray	et	al.,	NAR	(‘18)]

From a “Universe” of 
1.3 M pot. uORFs
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Prediction & validation of 
functional uORFs using 89 features

● All near-cognate start codons predicted.

● Cross-validation on independent ribosome 
profiling datasets and validation using in vivo 
protein levels and ribosome occupancy in 
humans (Battle et al. 2014).

[McGillivray	et	al.,	NAR	(‘18)]

Expr.
Level

Tissue
Dist.

Int. 
ATG
Start

Conser-
vation
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A comprehensive catalog of functional uORFs

● 180K: Large predicted positive set 
likely to affect translation  

● Calibration on gold standards, 
suggests getting ~70% of known

[McGillivray	et	al.,	NAR	(‘18)]

Universe of 1.3M
uORFs scored via 

Simple Bayes algo.

● Predicted functional uORFs may be intersected 
with disease associated variants.



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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Cancer Somatic Mutation Modeling
• Suppose there are k genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri: the covariate rank of the element

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

[Lochovsky et al. NAR (’15)]

PARAMETRIC MODELS

Model 3a: Random 
Permutation of Input 
Annotations
Shuffle	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2a: Varying Mutation Rate
with Single Covariate Correction

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction

NON-PARAMETRIC MODELS

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume	constant	background	
mutation	rate	in	local	regions.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation

[Lochovsky et al. Bioinformatics in press]

Can preserve tri-nt context in shuffle
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MOAT-s: a variant on MOAT-v
• A somatic variant simulator

• Given a set of input variants, shuffle to new locations, taking genome structure into 
account

[Lochovsky et al. Bioinformatics in press]
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LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial distribution is significantly better, especially for accurately modeling 

the over-dispersion of the empirical distribution

[Lochovsky et al. NAR (’15)]
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MOAT: recapitulates LARVA 
with GPU-driven runtime scalability

Computational efficiency of MOAT’s 
NVIDIA™ CUDA™ version, with 
respect to the number of permutations, 
is dramatically enhanced compared to 
CPU version.

MOAT’s high mutation burden elements 
recapitulate LARVA’s results & published 
noncoding cancer-associated elements.

Number	of	
permutations

Fold	speedup	of	
CUDA version

1k 14x
10k 100x
100k 256x

..

.

[Lochovsky et al. Bioinformatics in press]



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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Multi-omics of PsychENCODE & other consortia to 
understand functional genomics in brain disorders

• Brain transcriptome and 
epigenome

• Single cell deconvolution
• QTL
• Regulatory network
• Deep Neural Network for 

predicting disorders
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Brain specific transcriptome and epigenome from 
comparative analysis

Transcriptome Epigenome
(~79,000 brain enhancers)
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Single cell 
deconvolution 
Step 1: unsupervised 
learning to see cell 
types
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Single cell signatures
• ~14,000 cells (Lake et al., 

Science, 2016&2018)
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PNAS, 2015)
• ~18,000 cells (PsychENCODE, 

submitted)
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Larger Brain eQTL sets than previous studies

PsychENCODE all eGenes

PsychENCODE coding eGenes

CommonMind

HBCC
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GTEx BA9
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GWAS enrichment



5
9

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

multi-QTLs

eQTLs for mTOR 
mediated by cQTLs

1391 SNPs (multi-QTLs) in at 
least three types among 
eQTLs, isoQTLs, cQTLs, fQTLs

eQTLs and cQTLs
significantly overlap

eQTL
isoQTL
cQTL
fQTL
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Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor Binding Sites (TFBSs)

TF
Enhancer
Target gene

TFBS on promoter

TFBS on enhancer

!*= "#$%&'( ) − +! , + " ! , + . ! /0
TF expression (X) to predict target gene expression (Y) 
using Elastic net regression

C*i
Expression activity relationship

QTLs

C*j

C*k

Gene regulatory network 
inference

Imputed gene regulatory network linking 
TFs, enhancers and genes plus QTLs

e.g., subnetworks targeting single cell marker genes
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Linking GWAS SNPs to new disease genes 
using gene regulatory network

142

321 high-
confident 
SCZ genes

Activity
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Deep Structured Phenotype Network (DSPN) 

Boltzmann machine 
y: phenotypes

h: hidden units (e.g., circuits)

x: intermediate phenotypes 
(e.g., genes, enhancers)
z: genotypes (e.g., SNPs)

W: weights (e.g., regulatory 
network)

Variants

LR cRBM cDBM

L0
(conditioning 

units)

AGEBPDSCZ
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Modules

Higher-order 
groupings
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Embedded 
GRN layers
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Full connectivity
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Boundaries:
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Cell 
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Co-expression 
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Gene 

regulatory 
network

𝑝 𝐱, 𝐲, 𝐡|𝐳 ∝ exp −𝐸 𝐱, 𝐲, 𝐡|𝐳

𝐸 𝐱, 𝐲, 𝐡|𝐳 = −𝐳E𝐖𝟏𝐱 −𝐱E 𝐖𝟐𝐱 − 𝐱E𝐖𝟑𝐡 − 𝐡E𝐖𝟒𝐡 − 𝐡E𝐖𝟓𝐲 − 𝑩𝒊𝒂𝒔

Gene regulatory 
network builds 
DSPN skeleton

Energy model:
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DSPN improves brain 
disease prediction by 

adding deep layers

Accuracy = chance to correctly predict disease/health

Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum 
Disorder 

50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum 
Disorder 

50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 2.5
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum 
Disorder 

50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 3.1
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DSPN discovers molecular pathways from genotype 
to phenotype



Thoughts on Genome Annotation, Prioritizing Variants & 
Application of these concepts in a disease context

• RADAR
• Adapts FunSeq approach to RNA
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORFs
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• Types of variants: Germline, 

Somatic, &c
• Types of annotations: peaks, 

segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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segmentations, model predictions
• Genomic covariates

• Music
• Multi-scale peak calling

• Matched Filter
• Integrating cross-assay signal-track 

patterns associated with enhancer
• Trained on high throughput STARR-

seq experiments
• Validation in many different contexts

• FunSeq
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• PsychENCODE
(Application)
• Population-level analysis of 

functional genomics data related 
to mental disease

• Single-cell deconvolution 
explaining across-population 
variation

• Large QTL resource (~2.5M 
eQTLs)

• Regulatory network construction 
using QTLs, Hi-C, & activity 
relationships. Used to link GWAS 
SNPs to genes.

• Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype and 
transcriptome data.
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Flatow, Icahn School of Medicine at Mount Sinai; Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn 
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Info about this talk
No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk 

General PERMISSIONS
• This Presentation is copyright Mark Gerstein, Yale University, 2017. 
• Please read permissions statement at 

sites.gersteinlab.org/Permissions
• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via 

citation to relevant papers or website link). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this 
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF 
tags, such as  kwpotppt , that can be easily queried from flickr, viz: 
flickr.com/photos/mbgmbg/tags/kwpotppt


