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The Epigenomic Landscape of Splicing in Cancer

 Nearly all protein-coding genes in eukaryotes undergo alternative splicing, which 
provides important means to expand transcriptome diversity. It is implied that splicing 
occurs co-transcriptionally and splicing is both spatially and temporally linked to DNA 
elements and epigenetic modifications.

 Chromatin structures have been correlated with transcription dynamics, and thus, 
epigenetic regulation may play a significant role in alternative splicing. Recent studies 
have revealed splicing regulation is characterized by increased levels of nucleosome 
density and positioning, DNA methylation, and distinct histone modification patterns.

 Cancer cells show very distinct exon-level expression profile compared to normal 
cells and change in transcriptome can be attributed to epigenetic dysregulation 
(Figure 1). Yet, the extent, nature, and effects of epigenomic dysregulation in splicing 
remain unsolved.
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 In this study, we aimed to learn complex regulatory vocabulary of splicing and identify 
distinct epigenetic signatures that characterize splicing in cancer by systematically profiling 
the epigenomic landscape of splicing using transcriptomic and epigenomic data from the 
ENCODE and the Epigenome Roadmap projects.

 Alternative splicing is believed to be highly context-dependent and we found very 
complex histone signatures at both 3’ and 5’ splice sites. In general, H3K36me3 mark was 
enriched at both splice sites, as previously reported, but this mark was not always required 
to splice an exon. For cassette exons spliced and expressed, tumor and normal samples 
showed different levels of histone enrichments (Figure 2).

 To explore the epigenomic contribution to the regulation of alternative splicing, we built 
a machine learning classifier to predict alternate usages of cassette exons using DNA 
sequences and epigenomic signals adjacent to splice sites (Figure 3).

 We applied a deep recurrent neural network (RNN) 
model to solve this problem, which has proven 
successful in various sequential information processing 
and predictions such as natural language processing and 
translation. The rationale for applying RNN to our model 
is that (1) RNN is optimized for processing sequential 
information such as genomic sequences (2) RNN has a 
time direction resembling how RNA is always transcribed 
by RNA polymerase in the 5’ to 3’ direction (3) temporal 
memory cells of RNN allow the model to learn about 
complex context-dependent relationships among 
features, and (4) RNN is very flexible with the types of 
input and output data and therefore can easily integrate 
heterogeneous types of sequential data.

 Compared to conventional machine learning 
classifiers such as Random Forest and KNN, the RNN 
model consistently outperformed in terms of classification 
accuracy (Figure 4). On average, the prediction accuracy 
was 84.72% for the LSTM-based model (87.57% for the 
GRU-based model, Figure 5)). We trained a model from 
healthy primary tissues (adult liver and lung) and 
predicted splicing outcomes in matching cancerous cell 
lines (HepG2 and A549). We observed a moderate drop 
in the prediction accuracies, as expected. This implies 
that normal cells and cancerous cells may use different 
chromatin context to determine splicing.
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Figure 1. Clustering of exon-level expression profile using t-SNE

Figure 2. Chromatin signatures at 3’ acceptor splice sites
for cassette exons expressed in both tumor and normal samples

Figure 3. Schematic of splicing prediction model Figure 4. Performance comparison
of machine learning algorithms

Figure 5. Splicing prediction model performance


