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Leveraging Protein Structure & Dynamics 
for Variant Interpretation in Coding Regions

Mark Gerstein
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Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @MarkGerstein). 
No Conflicts for this Talk. See last slide for more info.
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation: 
the prevalence of rare variants in population studies

A Typical 
Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger

[Sethi et	al.	COSB	(’15)]	
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Rare variant analysis 
particularly applicable 

at the moment because 
of the many exomes 

•CMG rare disease variants & TCGA 
somatic variants

-Main NIH disease genomic 
project

-Both of these focus on ”rare” 
variant for which GWAS is not 
meaningful

-Larger numbers of individual 
exomes more important than 
WGS 

•Exomes have the current potential for 
great scale with the better impact 
interpretability of coding variants, often 
in a region of known protein structure 

-Scale of EXAC, >60K exomes
[Lek et al. ‘16]
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other words, a new, non-lethal, missense, germline mutation in a
GPCRdrug target arises in 1 of every!300newborns (Figure 2D).
These observations collectively suggest that GPCR drug targets
are likely to show substantial variation with new missense muta-
tions continuing to arise within their coding region.

Mutational Landscape of GPCR Drug Targets
In addition to MV, mutations that introduce a stop codon, cause
a frameshift or affect essential splice sites constitute loss-of-
function variations (LoF). The abundance of a protein-coding
gene may be affected by deletions and/or duplications (copy
number variation [CNV]). Such mutational events may alter the
functional property and/or change the abundance of a drug
target, either of which can influence drug efficacy, safety profile,
and adverse reaction. How much variability is seen in the GPCR
drug targets in the human population? To characterize the spec-
trum and prevalence of variation in GPCRdrug targets, we inves-
tigated data from the exome aggregation consortium (ExAC),
which contains aggregated information on MVs, LoFs, and
CNVs for!60,000 ‘healthy’ individuals (Lek et al., 2016; Ruderfer
et al., 2016). This allowed us to characterize the mutational land-
scape of currently druggable GPCRs in the human population.

We find a total of 14,192 MVs in 108 GPCR drug targets,
with a mean of 128 rare (MAF <1 3 10"3) and 3.7 common
(MAF R 1 3 10"3) variants per receptor (Figure 3A and S1A).

On average, 25% of all positions in each of the 108 GPCRs
contain a MV (Figure 3A). GPCR drug targets have, on average,
a LoF mutation in 9.3 different positions per receptor (Figure 3B).
Our conservative estimate suggests that on average, at least 120
of the 60,706 individuals harbor such LoF mutations (i.e., stop
codon, essential splice site, and frameshift mutation) in a
GPCR drug target (0.2%; STAR Methods). In fact, a minimum
of one LoF variant has been observed in each of the 108 GPCRs
suggesting that heterozygosity, regulatory epistasis, and buff-
ering mechanisms such as allele-specific expression might
offset the effects of these drastic mutations in healthy individuals
(Lappalainen et al., 2011; Kukurba et al., 2014).ManyGPCRdrug
targets are also susceptible to CNVs and each of the GPCRs
analyzed had on average two duplications and three deletions
reported in the ExAC dataset (Figure 3C).
The m-opioid receptor (MOR;OPRM1), targeted by analgesics,

is one of the highly variable GPCR drug targets in the human
population (Table S3; Figure S1B). Integrating the information
about the extent of variability of GPCR targets with the FDA-
approved drugs revealed that several of the highly polymorphic
GPCRs are targeted by a large number of drugs (Figures
S2A–S2C). Thus, the extensive genetic variation in GPCR drug
targets may contribute to a substantial, and as yet underappre-
ciated, variability in drug responses between individuals in the
population.

prescription and
sales data
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  targeted
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drug-variant pair

in vitro 
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Assessing the spectrum, prevalence and functional impact 
of genetic variation for alteration in drug response

functional sites
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Figure 1. Pharmacogenomic Landscape of GPCR Drug Targets
Schematic highlighting the different types of data analyzed in this study, ranging from data on drug targets, variants, functional effects, sequences, structures to

information on prescription, and sales of drugs in the UK.

42 Cell 172, 41–54, January 11, 2018

Structure particularly useful for 
interpreting the impact of the many 
rare variants whose effect can not 
be found via GWAS

Also, integration of structure data 
with genomic variants, EHR & drug 
data will be key for realizing the 
goal of precision medicine.

Structure & genomics

Gerstein et al., Nat. Struct. Bio. 2000

Hauser et al., Cell 2018
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[Sethi	et	al.	COSB	(’15)]	
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Leveraging Protein Structure and Dynamics 
for Variant Interpretation in Coding Regions

• Background on rare & common variants
• Identifying cryptic allosteric sites with STRESS 

- On surface & in interior bottlenecks 
• Frustration as a localized metric of SNV impact

- Differential profiles for oncogenes v. TSGs
• ALoFT: Annotation of Loss-of-Function Transcripts
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Leveraging Protein Structure and Dynamics 
for Variant Interpretation in Coding Regions

• Background on rare & common variants
• Identifying cryptic allosteric sites with STRESS 

- On surface & in interior bottlenecks 
• Frustration as a localized metric of SNV impact

- Differential profiles for oncogenes v. TSGs
• ALoFT: Annotation of Loss-of-Function Transcripts
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Models	of	Protein	Conformational	Change
Motion	Vectors	from	Normal	Modes	(ANMs)

inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

PDB	ID:	3RFU
Adapted	from	Fuglebakk	et	al,	2014

Characterizing	uncharacterized	variants
<=	Finding	Allosteric	sites
<=	Modeling	motion
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Surface	region	with	high	
density	of	candidate	sites

Surface	region	with	low	
density	of	candidate	
sites

Predicting	Allosterically-Important	Residues	at	the	Surface	

pdb	1J3H

1. MC	simulations	generate	a	large	number	of	candidate	sites
2. Score	each	candidate	site	by	the	degree	to	which	it	perturbs	large-scale	motions
3. Prioritize	&	threshold	the	list	to	identify	the	set	of	high	confidence-sites

! !

deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2

m=1
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Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)
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Predicting	Allosterically-Important	Residues	at	the	Surface	

Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)

PDB:	3PFK
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Predicting	Allosterically-Important	Residues	within	the	Interior	

Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)
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! 25!

where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 
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Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)

Predicting	Allosterically-Important	Residues	within	the	Interior	
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Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)

PDB:	1XTT

Predicting	Allosterically-Important	Residues	within	the	Interior	
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Auto-scalable
back-end

EC2Thin front end
EC2

RESTful
storage

EC2

EC2

S3

S3
Queue

Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)

STRESS	Server	Architecture:	Highlights
stress.molmovdb.org

• A	light	front-end	server	handles	incoming	requests,	and	powerful	back-end	
servers	perform	calculations.	

• Auto	Scaling	adjusts	the	number	of	back-end	servers	as	needed.	

• A	typical	structure	takes	~30	minutes	on	a	E5-2660	v3	(2.60GHz)	core.

• Input	&	output	(i.e.,	predicted	allosteric	residues)	are	stored	in	S3	buckets.
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1000	Genomes

p=0.309 p=1.80e-05

Intra-species	conservation	of	predicted	allosteric	residues
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ExAC

p=1.49e-3 p=7.98e-09

Intra-species	conservation	of	predicted	allosteric	residues
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Adapted	from	Clarke*,	Sethi*,	et	al	(‘16)
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17
[Sethi	et	al.	COSB	(’15)]	
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18
Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)

18
[Sethi	et	al.	COSB	(’15)]	
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Leveraging Protein Structure and Dynamics 
for Variant Interpretation in Coding Regions

• Background on rare & common variants
• Identifying cryptic allosteric sites with STRESS 

- On surface & in interior bottlenecks 
• Frustration as a localized metric of SNV impact

- Differential profiles for oncogenes v. TSGs
• ALoFT: Annotation of Loss-of-Function Transcripts
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What is 
localized 

frustration
?

[Ferreiro	et	al.,	PNAS	(’07)]
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Workflow for evaluating localized frustration changes (∆F)
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Complexity of the second order 
frustration calculation

T
i
m
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)
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Comparing ∆F values across different 
SNV categories: disease v normal

Loss of 
frustration

Gain of 
frustration

[Kumar	et	al,	NAR (2016)]

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably 
frustrate (less frustrated) surface more than core, 
but for disease mutations (HGMD) 
no trend & greater changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the 
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[K
um

ar
	e
t	a

l,	
N
AR

(2
01

6)
]
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Leveraging Protein Structure and Dynamics 
for Variant Interpretation in Coding Regions

• Background on rare & common variants
• Identifying cryptic allosteric sites with STRESS 

- On surface & in interior bottlenecks 
• Frustration as a localized metric of SNV impact

- Differential profiles for oncogenes v. TSGs
• ALoFT: Annotation of Loss-of-Function Transcripts
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vat.gersteinlab.org

VCF Input 
Output:
• Annotated VCFs
• Graphical representations of 

functional impact on 
transcripts

Access:
• Webserver
• AWS cloud instance
• Source freely available

Habegger	L.*,	Balasubramanian	S.*,	et	al.	Bioinformatics,	2012

Variant Annotation Tool (VAT), developed for 1000G FIG

CLOUD APPLICATION
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Complexities in LOF annotation

Transcript isoforms,
distance to stop,
functional domains,
protein folding,
etc.

Balasubramanian	S.	et	al., Genes	Dev., ’11
Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT

Output:

● Impact score: benign or deleterious.

● Decorated VCF.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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LoF distribution varies as expected 
by mutation set (from healthy people v from disease)

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT identifies deleterious
somatic LoF variants
Cancer genes:
• COSMIC consensus.
• Enriched in deleterious LoFs.

LoF tolerant genes:
• LoF in the 1KG cohort.
• Depleted in deleterious LoFs.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT refines cancer 
mutation characterization

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17

Vogelstein et al. '13: if >20% of mutations in gene 
inactivating → tumor suppressor gene (TSG).
ALoFT further refines 20/20 rule predictions.
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for Variant Interpretation in Coding Regions
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• Identifying cryptic allosteric sites with STRESS 
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- Differential profiles for oncogenes v. TSGs
• ALoFT: Annotation of Loss-of-Function Transcripts



3
3

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg
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for Variant Interpretation in Coding Regions

• Background on rare & common variants
• Identifying cryptic allosteric sites with STRESS 
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• Frustration as a localized metric of SNV impact
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github.com/gersteinlab/Frustration
S Kumar, D Clarke

A
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STRESS.molmovdb.org

D Clarke, A Sethi, 
S Li, S Kumar, 

R Chang, J Chen

ALoFT.gersteinlab.org

S Balasubramanian, 

Y Fu, M Pawashe, P McGillivray, 
M Jin, J Liu, K Karczewski, D MacArthur
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