RADAR:
Annotation &
prioritization of
variants
in the post-
transcriptional
regulome for
RBPs

Mark Gerstein
Yale

Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @MarkGerstein).
No Conflicts for this Talk. See last slide for more info.



Overall Problem:

. . . . AN YOU FIND THE PANDA?
Flndlng Key Variants in ST (T R O T (R % A
Personal Genomes Mo el e\ fal G D)= o
Millions of variants in a personal genome 2555 N S\eeSe
Thousands, in a cancer genome S e o
Different contexts for prioritization o s

In rare disease, only a few
high-impact variants are associated with disease

- . :
........

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD



Overa" PrObIem: CAN YOU FIND THE PANDA?
Finding Key Variants in T N ) e o )y
Personal Genomes (RN

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few
high-impact variants are associated with disease

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD

Thus: Need to find & prioritize high impact variants.
Particularly hard for non-coding regions.

3 - Lectures.GersteinLab.org



RADAR: Annotation & prioritization of variants
in the post-transcriptional regulome for RBPs

« Background on prioritizing non-coding variants:
FunSeq integrates evidence, with a “surprisal” based weighting scheme.
Prioritizing variants within “sensitive sites” (human conserved)

- RADAR
+ Adapts FunSeq approach to RNA
Prioritizes variants based on post-transcriptional regulome using ENCODE eCLIP
Incorporates new features related to RNA sec. struc & tissue specific effects

* Next step in prioritizing variants associated with RNA:
UORFs - Feature integration to find small subset of upstream mutations that
potentially alter translation
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Funseq: a flexible framework to determine

functional impact & use this to prioritize variants
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1
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[Khurana et al., Science (‘13)]
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SNPs which break TF motifs are under stronger selection
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Power-law distribution
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Hubs Under Constraint:
A Finding from the Network
Biology Community

High likelihood of
positive selection

Lower likelihood of
® positive selection

* More Connectivity, More Constraint: Genes & proteins that have a more central

position in the network tend to evolve more slowly and are more likely to be

essential.

* This phenomenon is observed in
many organisms & different kinds of networks

-yeast PPI - Fraser et al ('02) Science,

('03) BMC Evo. Bio.

- Ecoli PPI - Butland et al ('04) Nature
-Worm/fly PPI - Hahn et al ('05) MBE
-miRNA net - Cheng et al ('09) BMC Genomics

@)
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Not under positive
selection

No data about
positive selection
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HOT region .
Sensitive region

Polymorphisms

wa = 1 + palogopa + (1 = pa)log, (1 = pa)

Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

« Practical web server
» Submission of variants & pre-

 Note: This online web server s based on Funseq2
v2.10.

s BT computed large data context from
Blm | e uniformly processing Iarge-scale
B = datasets

Um-cpedﬁcwww
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RNA Binding Proteins (RBPs)

a RBP acting on RNA b RNA ac
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Schematic of RADAR Scoring
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RNA Structure Cons. from Evofold

High Phastcon in RBP-overlapped annotations
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Co-binding of RBPs form biologically relevant complexes

Literature supported RBP complexes
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

Rare DAF

Normal Hot Region Ultra-Hot Region
.

Hub Number (Hotness)

17 - Lectures.GersteinLab.org



TCGA
Expression Profile
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o

9s

9,

Binding Profile to 3’ UTR

Regulatory Potential of RBPs
derived from regression
between gene network and
expression levels

18 - Lectures.GersteinLab.org



Fraction of variants in BRCA

Validation for Somatic Variants:
RADAR Scores enriched in COSMIC genes & recurrently mutated regions
+ higher for tissue matched context

Effects of Cell and Tissue Specific Data

B on RADAR Score of Somatic Liver Variants
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Visualization of RADAR Features and Scoring

Germline Variants are Score Using a
Universal Scoring Scheme
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Visualization of RADAR Features and Scoring
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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RADAR: Annotation & prioritization of variants
in the post-transcriptional regulome for RBPs

« Background on prioritizing non-coding variants:
FunSeq integrates evidence, with a “surprisal” based weighting scheme.
Prioritizing variants within “sensitive sites” (human conserved)

- RADAR

« Adapts FunSeq approach to RNA
Prioritizes variants based on post-transcriptional regulome using ENCODE eCLIP
Incorporates new features related to RNA sec. struc & tissue specific effects

* Next step in prioritizing variants associated with RNA:
UORFs - Feature integration to find small subset of upstream mutations that
potentially alter translation



cap

Upstream open reading frames (UORFs) regulate
translation are affected by somatic mutation

5’ UTR main coding sequence 3’ UTR polyA .
| I I I 1 ® UORFs regulate the translation of downstream
e ARAAAA coding regions.
u u . . .
[Calvoetal, PNAS (09)] e This regulation may be altered by somatic
Fegieln® mutation in cancer.
uORF coding ORF .
' 2 e |n Battle et al. 2014 data uORF gain & loss
—a——— assoc. protein level change.
Initiation at No initiation at uORF.
.\ uORF A 43S “leaks” by. [ uORF gain
—.:l—i:l— - s> — L F I UORF loss [McGillivray et al., NAR (‘18)]
3 \ 5= v o
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v 3
D
No translation of Translation of : : g g . : . . . . :
protein-coding ORF protein-coding ORF 10 11 12 13 14 15 16 17 18 19 20
[Ferreira et al., Bioengineered (‘14)] # study subjects increasing power
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional
uORFs may be significant

functional uORFs
population size unknown

ribosome profiling labeled uORFs
known population size

high false negative rate

high false positive rate

&

all uORFs all uORFs
e Ribosome profiling experiments have
low overlap in identified uORFs.
e This suggests high false-negative rate,

and more functional uORFs than

currently known.

[McGillivray et al., NAR (‘18)]
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Prediction & validation of
functional uORFs using 89 features

e All near-cognate start codons predicted.

e (Cross-validation on independent ribosome
profiling datasets and validation using in vivo
protein levels and ribosome occupancy in
humans (Battle et al. 2014).

— training validation ROC
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3 0o e
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start codon o
) ]

[McGillivray et al., NAR (‘18)]

ribosome profiling
UORFs

extract 89 feature attributes

| discretize feature values |

| train classifier |

v

| score UORFs |

v

| threshold scores |

‘eéative uORE:? positive uORFs

| validation |

KS statistic
0 Oil Oi2 0i3 0i4 0i5

log(expression level)

GTEX tissue entropy

\ J ]

4 N

w

log(# codons)

N

=

—

log(GERP score)

# internal ATG (start) codons

Expr.
Level

Tissue
Dist.

Int.
ATG

92
-+
Q
=~
-+

Cons-
ervation
25 - Lectures.GersteinLab.org



A comprehensive catalog of functional uORFs

Epositive score
Onegative score

total predicted positive 60, 2-voted positive
unlabeled Dpredicted positive 1.8X10° } §
8x10° dlmd]jﬂjj H HH]
: 0 L
Universe of 1 .3M £ ‘ d”H“ @ @ @
o i
UORFs scored via = o —=d O e o v 1-voted positive

70% 71% 72%

Slmple Bayes algo' 1746/2485 1228/1738 705/976

score

| sl

-

#UORFs

® 180K.: Large predicted positive set

e Predicted functional uORFs may be intersected likely to affect translation

with disease associated variants. _ ,
e (Calibration on gold standards,

suggests getting ~70% of known

[McGillivray et al., NAR (“18)]

26 -



RADAR: Annotation & prioritization of variants
in the post-transcriptional regulome for RBPs

« Background on prioritizing non-coding variants:
FunSeq integrates evidence, with a “surprisal” based weighting scheme.
Prioritizing variants within “sensitive sites” (human conserved)

- RADAR

« Adapts FunSeq approach to RNA
Prioritizes variants based on post-transcriptional regulome using ENCODE eCLIP
Incorporates new features related to RNA sec. struc & tissue specific effects

* Next step in prioritizing variants associated with RNA:
UORFs - Feature integration to find small subset of upstream mutations that
potentially alter translation
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