

Transcriptome Mining:

Tackling core issues related to gene regulation
\& also analyzing the "data exhaust" associated with this activity

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org \& "tweetable" (via @markgerstein). See last slide for more info.

TranScriptome = Gene Activity of All Genes in the Genome,

 usually quantified by RNA-seq

Expression of genes is quantified by transcription: RNA-Seq measures mRNA transcript amounts

RNA-Seq Overview

Overlap profile

Reads => Signal

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT GGAGGCTGGAGTTGGGGACGTATGCGGCATAG TACCGATCGAGTCGACTGTAAACGTAGGCATA ATTCTGACTGGTGTCATGCTGATGTACTTAAA

Activity Patterns

- RNA Seq. gives rise to activity patterns of genes \& regions in the genome

Some Core Science Qs Addressed by RNA-seq

- Gene activity as a function of:
- Developmental stage: basic patterns of co-active genes across development
- Cell-type \& Tissue: relationship to specialized functions
- Evolutionary relationships: behavior preserved across a wide range of organisms; patterns in model organisms in relation to those in humans
- Disease phenotypes: disruption of patterns in disease
- Our overarching Qs: Are there core, ancient patterns of gene expression? Are they associated with development? Are they disrupted by disease?

Studying large-scale transcriptome data also produces

Data Exhaust

- Data Exhaust = Exploitable byproducts of big data collection and analysis
- Creative use of Data is key to Data Science!
- [Core-1] Expression Clustering, Cross-species
- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy \& RNA-seq
- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

Transcriptome Mining: Tackling core issues related to gene regulation \& also analyzing the "data exhaust" associated with this activity

- [Core-1] Expression Clustering,

 Cross-species- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy

\& RNA-seq

- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

ENCODE Time-course gene expression data of worm \& fly development + human conditions

Comparative ENCODE Functional Genomics Resource
(EncodeProject.org/comparative)

Organism	Major developmental stages
worm	33 stages: $0,0.5,1, \ldots, 12$ hours, L1, L2, L3,
$($ C. elegans $)$	L4,., Young Adults, Adults
fly	30 stages: $0,2,4,6,8, \ldots, 20,22$ hours, L1-
$(D$. mel. $)$	L4, Pupaes, Adults

L4, Pupaes, Adults

- Broad sampling of conditions across transcriptomes for human, worm \& fly
- embryo \& ES cells
- developmental time course (worm-fly)
- In total: ~3000 datasets (~130B reads)

Expression clustering: revisiting an ancient problem

Species A

Expression clustering: revisiting an ancient problem

Network modularity

Dolphin social network

Network modularity

$Q \approx 0$

Network modularity

Optimization problem for sim. annealing

A toy example [orthoclust]

Species A
Species B

__ co-expressed

reward an orthologous pair
with the
same value
 $+K \sum_{\left(i, j^{\prime}\right) \in O r t h o} \delta_{\sigma_{i} \sigma_{j}}$ $H=Q\left(\right.$ for all σ_{i} in A$)+\mathrm{Q}\left(\right.$ for all σ_{i} in B$)$

Favorableness = "Modularity" in species A + "Modularity" in species B + consistency betw. A \& B

A toy example [orthoclust]

Species B

species A specific
conserved modules
species B specific
Use Potts model (generalized Ising model) to simultaneously cluster co-expressed genes within an organism as well as orthologs shared between organisms. Here, the ground state configuration correspond to three modules: 1, 2, 4.

Application for more than 2

Conserved modules exhibit canonical hourglass behavior

Illustrations courtesy Naoki Irie

Canonical Inter-organism Behavior

- "Hourglass hypothesis": all organisms go through a particular stage in embryonic development ("phylotypic" stage) where inter-organism expression differences of orthologous genes are smallest.
- 12 out of our 16 modules have this behavior

Transcriptome Mining: Tackling core issues related to gene regulation \& also analyzing the "data exhaust" associated with this activity

- [Core-1] Expression Clustering,

 Cross-species- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy

\& RNA-seq

- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

Is gene regulation among orthologs conserved?

State-space model for internal and external gene regulatory networks

- State X_{t} : Gene expression vector of internal group at time t
- $A_{i j}$ captures temporal casual influence from Gene i to Gene j in internal group
- $\boldsymbol{B}_{k l}$ captures temporal casual influence from external factor k to Gene l in internal group
- Control $\boldsymbol{U}_{\boldsymbol{t}}$: Gene expression vector of external factors at time t

State-space model for internal and external gene regulatory networks

Not enough data to estimate state space model for genes
(e.g., 25 time points per gene to estimate 4 million elements of A or B for 2000 genes)

Dimensionality reduction from genes to meta-genes (e.g., SVD)

Effective state space model for meta-genes (e.g., 250 time points to estimate 50 matrix elements if 5 meta-genes)

Canonical temporal expression trajectories from effective state space model

Is a std. ${ }^{\text {st }}$ order homogeneous matrix difference equation. It can solved by diagonalizing A giving.

...

$\tilde{B} \quad \tilde{U}_{t}$
$p^{\text {th }}$ internal principal dynamic pattern (iPDP): $\left[\lambda_{p}{ }^{1}, \lambda_{p}{ }^{2}, \ldots, \lambda_{p}{ }^{T}\right]$, where λ_{p} is $p^{\text {th }}$ eigenvalue of \tilde{A}.

Canonical temporal expression trajectories (e.g., degradation, growth, damped oscillation, etc.)

Flowchart

A. Gene state-space model

B. Dimensionality Reduction

D. Internal/External Principal Dynamic Patterns (PDPs)

$\longleftarrow \longleftarrow$ Internal regulation among internal genes/meta-genes by A / \tilde{A}
$\longleftarrow \longleftarrow$ External regulation from external genes/meta-genes to internal genes/meta-genes in Group X by B / \tilde{B}

External genes/meta-genes

Orthologs have similar internal but different external dynamic patterns during embryonic development

Fly's
effective state space model

Meta-genes

$$
\tilde{X}_{t+1}=\tilde{A} \tilde{X}_{t}+\tilde{B} \tilde{U}_{t}
$$

Orthologs have correlated iPDP coefficients

Coefficients of orthologs on WOrm

Evolutionarily conserved \& younger genes exhibit the opposite internal \& external PDP coefficients

Ribosomal genes have significantly larger coefficients for the internal than external PDPs, but signaling genes exhibit the opposite trend

Human-specific
TFs respond more strongly to hormonal stimulation during cellcycle than conserved genes in breast cancer cell

iPDPs

ePDPs

- EXT = human spec TFs
- diff from above
- perhaps responding to stimulation

Transcriptome Mining: Tackling core issues related to gene regulation \& also analyzing the "data exhaust" associated with this activity

- [Core-1] Expression Clustering,

 Cross-species- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy

\& RNA-seq

- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

Modeling cooperativity between TFs to target gene using logic gates

An example: selection of the best-matched logic gate

Wang, et al., PLoS Computational Biology, 2015

App. 1 - TF cooperativity in the cell cycle

Wang, et al., PLoS Computational Biology, 2015

Acute Myeloid Leukemia (AML)

Target gene	1824	ENCODE Data (K562, ChIP-seq)
TF	70	TCGA Data (AML, level 3, RNA-seq) Regulatory triplet
https://tcga-		
Patient sample	50,865	data.nci.nih.gov/tcga/tcgaDownload.jsp

Wang, et al., PLoS Computational Biology, 2015

App. 2 - TF cooperativity in AML

Regulatory triplet $\quad 50,865$ from ENCODE

Patient sample 197 for TCGA AML expression data

Human TF-TF-target

RF1	RF2	Common Target Gene (T)	Matched logic gate
ATF3	BDP1	YPEL1	AND
MYC	BCL3	BCR	T=RF1
ATF3	BRF2	AIF1L	AND
\ldots	\ldots	\ldots	\ldots

All common gene targets

Cancer-related TF, MYC, universally amplifies target expression

Transcriptome Mining: Tackling core issues related to gene regulation \& also analyzing the "data exhaust" associated with this activity

- [Core-1] Expression Clustering,

 Cross-species- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy

\& RNA-seq

- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

2-sided nature of functional genomics data: Analysis can be very General/Public or Individual/Private

- General quantifications related to overall aspects of a condition - ie gene activity as a function of:
- Developmental stage, Evolutionary relationships, Cell-type, Disease
- Above are not tied to an individual's genotype. However, data is derived from individuals \& tagged with their genotypes
- (Note, a few calculations aim to use explicitly genotype to derive general relations related to sequence variation \& gene expression - eg allelic activity)

Genomics has similar "Big Data" Dilemma in the Rest of Society

- Sharing \& "peerproduction" is central to success of many new ventures, with the same risks as in genomics
- EG web search: Largescale mining essential

- We confront privacy risks every day we access the internet

Tricky Privacy Considerations in Personal Genomics

- Genetic Exceptionalism : The Genome is very fundamental data, potentially very revealing about one's identity \& characteristics
- Personal Genomic info. essentially meaningless currently but will it be in 20 yrs? 50 yrs?
- Genomic sequence very revealing about one's children. Is true consent possible?
- Once put on the web it can't be taken back
- Culture Clash:

Genomics historically has been a proponent of "open data" but not clear personal genomics fits this.

- Clinical Medline has a very different culture.
- Ethically challenged history of genetics
- Ownership of the data \& what consent means (Hela)
- Could your genetic data give rise to a product line?

The Other Side of the Coin: Why we should share

- Sharing helps speed research
- Large-scale mining of this information is important for medical research
- Privacy is cumbersome, particularly for big data
- Sharing is important for reproducible research
- Sharing is useful for education
- More fun to study a known person's genome
- Eg Zimmer's Game of Genomes in STAT

[Yale Law Roundtable ('10). Comp. in Sci. \& Eng. 12:8; D Greenbaum \& M Gerstein ('09). Am. J. Bioethics; D Greenbaum \& M Gerstein ('10). SF Chronicle, May 2, Page E-4; Greenbaum et al. PLOS CB ('11)]

The Dilemma

[Economist, 15 Aug '15]

- The individual (harmed?) v the collective (benefits)
- But do sick patients care about their privacy?
- How to balance risks v rewards - Quantification
- What is acceptable risk?

Can we quantify leakage?

- Ex: photos of eye color
- Cost Benefit Analysis

Current Social \& Technical Solutions

- Closed Data Approach
- Consents
- "Protected" distribution via dbGAP
- Local computes on secure computer
- Issues with Closed Data
- Non-uniformity of consents \& paperwork
- Different international norms, leading to confusion
- Encryption \& computer security creates burdensome requirements on data sharing \& large scale analysis
- Many schemes get "hacked"
- Open Data
- Genomic "test pilots" (ala PGP)?
- Sports stars \& celebrities?
- Some public data \& data donation is helpful but is this a realistic solution for an unbiased sample of $\sim 1 \mathrm{M}$

Strawman Hybrid Social \& Tech Proposed Solution?

- Fundamentally, researchers have to keep genetic secrets.
- Need for an (international) legal framework
- Genetic Licensure \& training for individuals (similar to medical license, drivers license)
- Technology to make things easier
- Cloud computing \& enclaves (eg solution of Genomics England)
- Technological barriers shouldn't create a social incentive for "hacking"
- Quantifying Leakage \& allowing a small amounts of it
- Careful separation \& coupling of private \& public data
- Lightweight, freely accessible secondary datasets coupled to underlying variants
- Selection of stub \& "test pilot" datasets for benchmarking
- Develop programs on public stubs on your laptop, then move the program to the cloud for private production run

Representative Functional Genomics, Genotype, eQTL Datasets

- Genotypes are available from the 1000 Genomes Project
- mRNA sequencing for 462 individuals from gEUVADIS and ENCODE
- Publicly available quantification for protein coding genes
- Functional genomics data (ChIP-Seq, RNA-Seq, Hi-C) available from ENCODE
- Approximately 3,000 cis-eQTL (FDR<0.05)

- Functional genomics data comes with a great deal of sequencing
- NA12878 as case study - 1000 genomes variants are used as gold standard
- We can quantify amount of leakage at every step of the data summarization process.

samples
[Gursoy et al, Bioarvix]

- How much information, for example, do RNA-

Seq reads (or ChIP-Seq) reads contain? Does that information enough to identify individuals?

- It might seem like we don't infer much information from single ChIP-Seq and RNASeq experiments compared to WGS
- However putting 10 different ChIP-Seq experiments and RNA-Seq together with imputation provides a great deal of information about the individual

Privacy-aware file formats that hide the variants but recover signal

- Some lightweight format clearly separate public \& private info., aiding exchange
- Files become smaller
- Distinction between formats to compute on and those to archive with - become sharper with big data

Information Content and Predictability

$$
|C|\left(\begin{array}{c}
\left.\begin{array}{c}
\text { Indididual has vaiant } \\
\text { genotypes } \\
\text { for vaniants } V_{1}, V_{2}, \ldots, g_{1}, \ldots, V_{n}
\end{array}\right)
\end{array}\right)=\log \left(\begin{array}{c}
\frac{1}{\text { Frequency of }} \\
V_{1} \text { genotype } \\
g_{1}=2
\end{array}\right)+\log \left(\begin{array}{c}
\frac{1}{\text { Frequency of }} \\
V_{2} \text { genotype } \\
g_{2}=1
\end{array}\right)+\ldots+\log \left(\begin{array}{c}
\frac{1}{\text { Frequency of }} \\
V_{n} \text { genotype } \\
g_{n}=2
\end{array}\right)
$$

- Naive measure of information (no LD, distant correlations, pop. struc., \&c)
- Higher frequency: Lower ICI
- Additive for multiple variants

- Condition specific entropy
- Higher cond. entropy: Lower predictability
- Additive for multiple eQTLs

ICI Leakage versus Genotype Predictability

Average ICI Leakage

- Real
- Shuffled

0.0	0.5	1.0	1.5
	Average ICI Leakage		2.0

[Harmanciet al. Nat. Meth. ('16]
 $\begin{array}{ccccc}0.05 & 0.20 & 0.40 & 0.60 & 0.80 \\ & \text { Joint Average per Individual } & \text { Predictability }\end{array}$

Linking Attack Scenario

Linking Attacks: Case of Netflix Prize

User (ID)	Movie (ID)	Date of Grade	Grade [1,2,3,4,5]
NTFLX-0	NTFLX-19	$10 / 12 / 2008$	
NTFLX-1	NTFLX-116	$4 / 23 / 2009$	
NTFLX-2	NTFLX-92	$5 / 27 / 2010$	3
NTFLX-1	NTFLX-666	$6 / 6 / 2016$	2
\ldots	\ldots	\ldots	5
\ldots	\ldots	\ldots	\ldots

IMDh
Names available for many users!

User (ID)	Movie (ID)	Date of Grade	Grade [0-10]
IMDB-0	IMDB-173	$4 / 20 / 2009$	5
IMDB-1	IMDB-18	$10 / 18 / 2008$	0
IMDB-2	IMDB-341	$5 / 27 / 2010$	-

- The grades of same users are correlated
- A user grades one movie around the same date in two databases

Anonymized Netflix Prize Training Dataset made available to contestants

Linking Attacks: Case of Netflix Prize

Linking Attacks: Case of Netflix Prize

Linking Attack Scenario

Levels of Expression-Genotype Model Simplifications for Genotype Prediction

Success in Linking Attack with Extremity based Genotype Prediction

Success in Linking Attack with Extremity based Genotype Prediction

200 individuals eQTL Discovery 200 individuals in Linking Attack

Transcriptome Mining: Tackling core issues related to gene regulation \& also analyzing the "data exhaust" associated with this activity

- [Core-1] Expression Clustering,

 Cross-species- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy

\& RNA-seq

- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

The Human Genome Project

Worm Genome

The Human Genome Project

Science

ENCODE Pilot nature

DECODING
THEBLUEPRINT The ENCODE pilot maps
human genome function

ENCODE

 Production

Worm
modENCODE

The Human Genome Project

ENCODE
Pilot

nature

00

zhe

ENCODE

modENCODE

The Human Genome Project

Science

The Human Genome Project

Science

With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE data but were not supported by ENCODE funding \& 558 consortium papers supported by ENCODE funding (https://www.encodeproject.org/search/?type=Publication for up-to-date query) Then identified 1,786 ENCODE members \& 8,263 non-members .
\square non-ENCODE (papers used ENCODE data) ■ ENCODE

Co-authorship Network of ENCODE members \& Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker co-authorship

ENCODE member non-member

- ENCODE member broker
- non-member broker co-authorship

Co-authorship Network of ENCODE members \& Data Users

î

\# neighbors: non-ENCODE ==>

Co-authorship Network of ENCODE members \& Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker co-authorship

Dynamics of coauthorship network

Dynamics of co-
authorship network
2009

Dynamics of co-
authorship network
2009

2008

Transcriptome Mining: Tackling core issues related to gene regulation \& also analyzing the "data exhaust" associated with this activity

- [Core-1] Expression Clustering,

 Cross-species- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy

\& RNA-seq

- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination
- [Core-1] Expression Clustering, Cross-species
- Comparative ENCODE - Lots of worm-fly-human matched data \& developmental timecourses
- Optimization gives 16 conserved coexpression modules, $12 \mathrm{w} /$ hourglass
- [Core-2] State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers; Decoupling expression changes into those from conserved vs speciesspecific genes
- Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)
- [Exhaust-1] Genomic Privacy \& RNA-seq
- The dilemma: The genome as fundamental, inherited info that's very private v need for large-scale mining for med. research
- 2-sided nature of RNA-seq presents a particularly tricky privacy issue
- Using file formats to remove obvious variants
- Quantifying \& removing further variant info from expression levels + eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- [Exhaust-2] Publication Patterns from data producing consortia
- Co-authorship network statistics relate to publication rollouts \& show gradual adoption by a diverse community
- Key role of brokers in data dissemination

Acknowledgements: ENCODE/modENCODE Transcriptome Group

Joel Rozowsky, Koon-Kiu Yan, Daifeng Wang,

 Chao Cheng, James B. Brown, Carrie A. Davis, LaDeana Hiller, Cristina Sisu, Jingyi Jessica Lí, Baikang Pei, Arif 0 . Harmanci, Michael o. Duff, Sarah Djebali, Roger P. Alexander, Burak H. Alver, Raymond K. Auerbach, Kimberly Bell, Peter J. Bickel, Max E. Boeck, Nathan P. Boley, Benjamin W. Booth, Lucy Cherbas, Peter Cherbas, Chao Di, Alex Dobin, Jorg Drenkow, Brent Ewing, Gang Fang, Megan Fastuca, Elise A. Feingold, Adam Frankish, Guanjun Gao, Peter J. Good, Phil Green, Roderic Guigó, Ann Hammonds, Jen Harrow, Roger A. Hoskins, Cédric Howald, Long Hu, Haiyan Huang, Tim J. P. Hubbard, Chau Huynh, Sonali Jha, Dionna Kasper, Masaomi Kato, Thomas C. Kaufman, Rob Kitchen, Erik Ladewig, Julien Lagarde, Eric Lai, Jing Leng, Zhi Lu, Michael MacCoss, Gemma May, Rebecca McWhirter, Gennifer Merrihew, David M. Miller, Ali Mortazavi, Rabi Murad, Brian Oliver, Sara Olson, Peter Park, Michael J. Pazin, Norbert Perrimon, Dmitri Pervouchine, Valerie Reinke, Alexandre Reymond, Garrett Robinson, Anastasia Samsonova, Gary I. Saunders, Felix Schlesinger, Anurag Sethi, Frank J. Slack, William C. Spencer, Marcus H. Stoiber, Pnina Strasbourger, Andrea Tanzer, Owen A. Thompson, Kenneth H. Wan, Guilin Wang, Huaien Wang, Kathie L. Watkins, Jiayu Wen, Kejia Wen, Chenghai Xue, Li Yang, Kevin Yip, Chris Zaleski, Yan Zhang, Henry Zheng,

Steven E. Brenner, Brenton R. Graveley, Susan E. Celniker, Thomas R Gingeras, Robert Waterston

DREISS.gersteinlab.org
d Wang, f He, S Maslov
papers.gersteinlab.org/subject/privacy „ Greenbaum

Loregic.gersteinlab.org ¿ Wang, кк Yan, c Sisu, c Cheng, J Rozowsky, W Meyerson

PrivaSeq.gersteinlab.org a Harmancil, g Gürsoy, F Navarro github.com/gersteinlab/OrthoClust k Yan, d Wang, J Rozowsky, H Zheng, C Cheng

Publication patterns ["encode authors"]
d Wang, kk Yan, J Rozowsky, E Pan
Hiring Postdocs. See JOBS.gersteinlab.org !

Extra

Info about content in this slide pack

- General PERMISSIONS
- This Presentation is copyright Mark Gerstein, Yale University, 2017.
- Please read permissions statement at www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides \& images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
- Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS \& IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
- In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt

