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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Keys to genome interpretation
Relating individuals' variants to DBs
Scaling DBs to the population
|dentifying key variants -

separating into rare, recurrent,
common, &c
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DB Growth:
explosion
of data scale

& a diversity of

uses

* The type of
sequence data
deposited has
changed as well.

Protected data
represents an
increasing fraction of
all submitted
sequences.
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Sequencing Data Explosion:
Faster than Moore’s Law?

- In the early 2000’s,
improvements in Sanger
sequencing produced a
scaling pattern similar to
Moore’s law.

- The advent of NGS was a
shift to a new technology
with dramatic decrease in
cost).

Cost per Raw Megabase of DNA Sequence

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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Moore’s Law:
Exponential
Scaling of
Computer
Technology

« Exponential increase in the
number of transistors per
chip.

* Led to improvements in
speed and miniaturization.

* Drove widespread adoption
and novel applications of
computer technology.

1010
108~

10°- L]

(]
10%- ~
o®
Transistors per chip “
102- °

o
o °

[ ]
Clock speeds (MHz)
1025 T T T 1
1960 1974 1988 2002 2016

Size (mm3)

1012

oy
101~ .. el

10 -
10°-
10°;
107+
10¢
10°
104
10°
100
10,

13
o1 ‘ : ‘ : LA
1950 1960 1970 1980 1990 2000 2010 2020

7 - Lectures.GersteinLab.org



Kryder’s Law and
S-curves
underlying
exponential growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer
speed has been, the
ability to store large
amounts of information on
computers is even more
crucial

* Exponential increase
seen in Kryder's law is
a superposition of
S-curves for different
technologies

Performance

Gigabytes per dollar

Gigabytes per dollar over time

10

-~

6.4
1980

1984

1988 1992 1996 2000 2004 2008
Year

echnology 2

A 4
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The changing costs of a sequencing pipeline

Sample collection and . Data reduction Downstream
S !
Sarph Experimental B operimental design B SeUe0 g ppy management O analyses
collection deson
100% _
Sequencing
&
o
E
@
o
o
g
0% -
Pre-NGS Now Future
i 2010) i

From ‘00 to ~'20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

[Sboner et al. (“11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

Sample collection and ; Data reduction Downstream
) ! Sequencin
Experimental B perimental design B 9 @ Data management L analyses
design

g
3
Y
g
g

\

Pre-NGS Now Future
i 2000) (s i 2010) \pproximately 2020)
From ‘00 to ~'20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

BN Labor

3 Instrument depreciation and maintenance

[ Reagents and supplies

[ Indirect costs

[Sboner et al. (“11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

Sample collection and 1 Data reduction Downstream
B ooperimontal design B S°UeNNG o 1y management I analyses

100% _

Sequencing

o

18 management

il

Future
2010) 2020)

From ‘00 to ~’20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

Alignment algorithms scaling to keep
pace with data generation

[Sboner et al. (“11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

Sample collection and 1 Data reduction Downstream
B ooperimontal design B S°UeNNG o 1y management I analyses
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From ‘00 to ~’20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

Alignment algorithms scaling to keep
pace with data generation
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12 - Lectures.GersteinLab.org



The changing costs of a sequencing pipeline
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Human Genetic Variation

Population of

A Cancer Genome A Typical 2,504 peoples
° Genome ° 000
(¥ ) "M
Origin of Variants Class of Variants
Coding Non- 3.5-4.3M
coding
| 550 — 625K
2.1-25K
Somatic ~50 5K N (20Mb)
4.1 -5M

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%) Rare (~75%)
* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Germline

« Common variants
+ Can be most readily associated with phenotype (ie disease) via GWAS
» Usually their functional effect is weaker
* Many are non-coding
* Issue of LD in identifying the actual causal variant.
* Rare variants
» Associations are usually underpowered due to low frequencies but often have larger
functional impact
» Can be collapsed in the same element to gain statistical power (burden tests).

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

15 - Lectures.GersteinLab.org



CAN YOU FIND THE PANDA’? _

Finding Key
Variants

Somatic

e Overall

* Often these can be thought of as very rare variants

* Drivers

* Driver mutation is a mutation that directly or indirectly confers a selective growth
advantage to the cell in which it occurs.
* A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

* Passengers

* Conceptually, a passenger mutation has no direct or indirect effect on the
selective growth advantage of the cell in which it occurred.

Vogelstein B. Science 2013. 339(6127):1546-1558
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Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction + Functional impact #2: Non-coding
* Anindividual’s disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling of data generation «  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants  Recurrence:

* Functional impact #1: Coding

for key drivers Statistics for driver identification

+ Background mutation rate significantly varies & is

ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts. + Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs + LARVA uses parametric beta-binomial model, explicitly
Frustration as a localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes « MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs
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Variant Annotation Tool (VAT), developed for 1000G FIG

VCF Input

Output:
« Annotated VCFs
- Graphical representations of
functional impact on
transcripts

Access:

« Webserver
« AWS cloud instance
«  Source freely available

Virtual Machine (VM) | 's3 disabled Scalable VAT User
Web Server / EC2 Instance / Local Disk Cloud Service I
)
VAT 1/0 i S3enabled i VM1 i
Executables Layer '\:\ Input L)
I I Bucket [Tt
i <« VM2 ¥—f Master
VAT Web Application E Output \I_______________-_-_:
Public HTML / API i Bucket {  VMn b
- - — J -
Graphical representation of genetic variants
| — —
[ R
- — - .
- . ——
- -
| e | mm |

vat.gersteinlab.org

Habegger L.", Balasubramanian S.”, et al. Bioinformatics, 2012
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Complexities in LOF annotation

Impact of a SNP on alternate splice forms

— == Isoform 1
- - (soform 2

TAﬁects only Isoform 1

Transcript isoforms,

distance to stop, Case 1
functional domains,

protein folding,

Isoform 1
etC- Reference o Lob =
_- Isoform 2

Balasubramanian S. et al., Genes Dev., ‘11 l‘“‘“‘s both isoforms
Balasubramanian S.*, FuY.* et al.,, NComms., 17
Case 2 ——. : Isoform 1
Isoform 2
SLC2A2 ¢
1KG
ENSTO00000469787 m—mumm -1
—_— 1
ENST00000497642 Hi——— S
HGMD [ -1
1 ENST00000382808
ENSTO00000314251

S T '
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT
Output:

e |Impact score: benign or deleterious.

e Decorated VCF.

Balasubramanian S.*, FuY.* et al.,, NComms.,’17

Input
VCF file

!

Annotate pLoF variants
with variant and transcript specific features

Segmental duplication;
pseudogene; paralog

Annotation Issue

Non-canonical splice site;
LoF position...

( Functional )

NMD prediction; Loss of functional, structural
domains, disordered regions, post translational
modification sites; gene expression in GTex...

( Conservation )

GERP score; dN/dS; 1000G, ESP6500 allele
frequency; heterozygosity of genes...

( Network )

Shortest path to disease genes; network

centralities...

Pathogenicity prediction

Prediction model

trained on benign, dominant and recessive
disease-causing premature stop mutations

|

Annotated features for pLoFs

3 pathogenicity scores for premature stop and frameshift variants

€.g-chr pos ref alt effect
1 866453 C T prematureStop SAMD11 0.02 0.06 0.92 Recessive High

Output

gene dominant benign recessive prediction Confidence

21 -



LoF distribution varies as expected

by mutation set (from healthy people v from disease)

pLoF variant fraction

= 1KG (AF < 1%) Fraction of variants

0.12 — 1KG (AF >= 1 %
= ESP6500 (AF<1%
ESP6500 (AF >= 1%)
n ExAc(AF<1%
0.1 = EXAC (AF >= 1%)
HGMD
0.08 — /.
R
0.06 — i7e
L] . °
\ . e _ 6= a._ ;.__.t
::::\!Zl\:;'=:20:!7,\./5\:;l
0.04 — AN .
0.02 —
| | I T |
0.2 0.4 0.6 0.8 10

Relative position in CDS

Benign ALoFT Score

1kg ESP6500 ExAC

AF>1% AF>1% AF>1%
1.00 - |
$ .
0.75 - *
: : :
L4 H
0.50 - . . :
s 3
0.25 -
0.00 - E
1kg ESP6500 EXAC HGMD
AF<1% AF<1% AF<1%

Balasubramanian S.*, FuY.* et al.,, NComms., 17
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Application to LoF mutations
in autism spectrum disorder

dominant ALOFT score

autism other
genes genes

Balasubramanian S.*, Fu Y.* etal., NComms., 17

density

(=}

0 05 1.0 15 15

0 051015

05 1.0 15

0

de novo pLoFs in siblings (n=19)

de novo pLoFs in autism patients (n=51) (male & female)

de novo pLoFs in male autism patients (n=35)

+

de novo pLoFs in female autism patients (n=16)

0.|2 0.4 0|.6 0.8
dominant ALoFT score
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cancer genes vs. LoF tolerant genes

—8—504 cancer genes —e— 387 LoF-tolerant genes

ALOFT identifies deleterious

somatic LoF variants —o—- 504 random genes —e— 387 random genes
§ 3 . T
Cancer genes: v
]
« COSMIC consensus: 2
* Enriched in deleterious LoFs. 2
©
©
>

LoF tolerant genes:
* LoF in the 1KG cohort. . -
» Depleted in deleterious LoFs.

0O 01 02 03 04 05 06 07 08 09 1

percentage pf somatic pL

. * * 7
Balasubramanian S.*, FuY.* et al.,, NCommes., 17 1-benign ALOFT score
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ALOFT refines cancer
mutation characterization

20/20 rule ALOFT stratification

o

40
1

8

—8

30
1

10
1

percent deleterious LoFs
20

o o
T

TSG non-TSG

Vogelstein et al. '13: if >20% of mutations in gene
inactivating - tumor suppressor gene (TSG).

ALOFT further refines 20/20 rule predictions.

Balasubramanian S.*, FuY.* et al.,, NComms.,’17

ratio of deleterious LoFs to
total non-silent mutations (%)

ratio of deleterious LoFs to
total pLoF mutations (%)

deleterious LoFs / total mutations

80 7

60 7

40 7

20 7

"n_

deleterious LoFs / total LoFs

100

o]
o
1

[«2]
o
1

S
o
1

N
o
1

o
1

i_ﬁ—Té_i

tumor mutational burden

Ll

o o o

T T T T
mutations < 100 100 < mutations < 1000 1000 < mutations < 10000 mutations > 10000

N=741

N=202 N=37 N=18
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Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction « Functional impact #2: Non-coding
* Anindividual's disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling o7 ciata generation »  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants « Recurrence:

for key drivers Statistics for driver identification

* Functional impact #1: Coding

_ _ + Background mutation rate significantly varies & is
ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts.

« Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs « LARVA uses parametric beta-binomial model, explicitly
Frustration =5 2 localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes » MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs
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[Ferreiro et al., PNAS ('07)]

27 = Lectures.GersteinLab.org



610 e uUI9}SI95) 'SaIN}IDT] = 8c

S—
LL
d
9JN}dNJ1S pajeinw 3y} Jo |opow
% 9y} buisn paje|ndjed saibisu]
Mu _
P @mwmm@m Bd: B 28H BEEEA
o He :
= l———>
— (=) gl ©
I M VY-
7 S %W% o U
m ] , m |
- Fw ¢ m.Em-e
3 [ Vs
N [ gu
© =
o
o
mv =1 5 =
.n._w \' \'/ v A
5 |5 uF (£ o
© I I g
v (%]
o :..m & S ]
e Lt :m o L :m
W g - g
m 24n1onJ1s 2dA1-pIm 3y

buisn pajejnojed salbisu]

[(9T0Z) YVN ‘e 13 Jewny]



Complexity of the second order
frlistration calculation

SWT,

Second order frustration calculation (AF)

First order frustration calculation (F)

MD-ass

isted free energy calculation (AG)

Accuracy
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[Kumar et al, NAR (2016)]

Comparing AF values across different
SNV categories: disease v normal

I [ [
1KG ExAC HGMD 1KG EXAC HGMD
Core residues Surface residues

Normal mutations (1000G) tend to unfavorably
frustrate (less frustrated) surface more than core,
but for disease mutations (HGMD)

no trend & greater changes
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[Kumar et al, NAR (2016)]

Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers

™ N

©e-v6

core surface core surface

AF

1

o= =0

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.
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Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction « Functional impact #2: Non-coding
* Anindividual's disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling o7 ciata generation »  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants « Recurrence:

for key drivers Statistics for driver identification

* Functional impact #1: Coding

_ _ + Background mutation rate significantly varies & is
ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts.

« Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs « LARVA uses parametric beta-binomial model, explicitly
Frustration =5 2 localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes » MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs



Funseq: a flexible framework to determine

functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

Non-coding annotation

o ® oo m ® SNV W Indel
o

l I \

\

\

\

\

\

Degree of negative selection

Motif disruptive score

breaking | \ |

| \ } :( )/

[ \

| | \ Degree of network centrality
Enhancer/

Promoter [ ‘

, Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14),
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1
Broad Categories
Coding !

Genomic Avg ia

Enhancer .
| ancer | R Broad categories of
(Non-coding RNA) nCRNA- regulatory regions under

(DNase | hypersensitive sites) DHS h negative SEIECtion
(TFSS: Sequence-specific TFs) Related to:
(Transcription factor binding sites) TFBS ENCODE, Nature, 2012
. H Ward & Kellis, Science, 2012
| Chromatin Mu et al, NAR, 2011

Pseudogene —
]

[ I T 1 I T ]
056 058 060 062 064 0.66 0.68

Fraction of rare SNPs

Depletion of Common Variants
in the Human Population
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A

GenomicAvg 27M SNPs |

Synonymous | 0.12M

TFBS

Coding 0.27M

>
Missense | 0.15M

Enhancer

TFSS
General

Chromatin

'
Pseudogene | 57K —i
> '

Broad Categories

0.56 06

Fraction of rare SNPs

Sub-categorization possible

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

because of better statistics from

1000G phase 1 v pilot

Differential
selective
constraints
among specific
sub-categories

[Khurana et al., Science (‘13)]
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_ , ~0.4% genomic coverage (~ top 25)
:°s“;$,‘;§?’v‘gf127i</ L/ — ~0.02% genomic coverage (top 5)
Utreseema L SK 7 5

0.56 2.'6 . fo.é4 . lo.és 0.72 Defi n i n g
Sensitive

A Broad Categories B Specific Categories -
GenomicAvg 27M SNPs  }
. TF Families (motifs) - I
Coding  0.27M . r Coding . H
>
Missense | 0.15M . & Fom:.':ﬁ

Synonymous | 0.12M VoM
UTR| 0.4M

Regions

Enhancer & ° I
ovs [ — start © 7 7 high-
Trss B ° 5 .
2] Goneral |3 L : resolution non-
= : cer-nFy I — ¢ . . .
RN 050 055 060 0.5 0.70 COdmg C_ategorles’
Pseudogens : Rank & find those
o - under strongest
0.56 06 0.64 0.68 0.72 selection

Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

[Khurana et al., Science (‘13)]
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SNPs which break TF motifs are under stronger selection

A Broad Categories
Genomic Avg  27M SNPs

Coding 0.27M

D
Missense [ 0.15M
Synonymous | 0.12M

UTR| 0.4M

Enhancer

DHS

TFSS

General

TFBS

Chromatin

Pseudogene
4

0.56 0.6 0.64 0.68
Fraction of rare SNPs

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

SNPs Conserving vs. motifs

Forkhead
I iy

—r 1 1 1T 1T 1
0.0 0.2 0.4 0.6

Forkhead motif Motif breaking SNP
T chr1: 98,100,579
2.0
1.0
0.01=1 ==_01 <L
5 10 15

2 s

—r 11 1T 1 1
0.0 0.2 0.4 0.6

AP-2 motif T Motif breaking SNP
20 chr14: 99,849,316

1.01
0.0l =\

[Khurana et al., Science (‘13)]
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# Note: T online web server s based on Funseaz

V2.1

[ Process
Pre-collected data

O  User-optional input
22 user-specific inputioutput

i-mpdmnsmur Ipossbe nmngNV:
71019 ! without

HOT region .
Sensitive region

Polymorphisms

wa = 1 + palogapa + (1 = pa)log, (1 = pa)

Entropy based method for weighting
consistently many genomic features

Practical web server

» Submission of variants & pre-
computed large data context from
uniformly processing large-scale
datasets

38 - Lectures.GersteinLab.org
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Germline pathogenic variants show
higher core scores than controls

o - =
unmatched: 0.86
o |
< — o
[]
2
©
xr o |
[\o R [0} o
2
@
o = |
N o o
[
2
I g
- ’ I | l o
o — ! L 8 -
T T T T T T
HGMD Matched region  Matched TSS Unmatched
regulatory (1,527)  (4,258) (13,861) (144,086) 00 02 04 06 0.8 10

False Positive Rate
3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants

2. Matched TSS: matched for distance to TSS

3. Unmatched: randomly selected
Ritchie et al., Nature Methods, 2014 [Fu et al., GenomeBiology (14, in revision)]
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Prostate
cancer
I
1000 Genomes
Screen
n
Functional
annotation
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Candidate drivers
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y

Target gene known ?

Flowchart for 1 Prostate Cancer
Genome (from Berger et al. '11)

[Khurana et al., Science (‘13)]
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Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction « Functional impact #2: Non-coding
* Anindividual's disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling o7 ciata generation »  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants « Recurrence:

for key drivers Statistics for driver identification

* Functional impact #1: Coding

_ _ + Background mutation rate significantly varies & is
ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts.

« Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs « LARVA uses parametric beta-binomial model, explicitly
Frustration =5 2 localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes » MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs
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mutation load (standardized)

o

T T
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Replication timing
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-
N
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o

05

-0.5

| 1 1 | 1

-1.5
-600000 -400000 -200000 boundary 200000 400000 600000
genomic distance from the TAD boundary

[Yan et al., PLOS Comp. Bio. (‘17); S. Li et al., PLOS Genetics (‘17)] ]
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Normalized Mutafion counts
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Normalized replication timing

04 06 0.8

T | 1 Ll 1 i | |

0 10 2 3 4 50 60 70
Bin Index [Lochovsky et al. NAR (‘15)]

Chromatin remodeling failure leads to more mutations in
early-replicating regions

Variation in somatic mutations
is closely associated with
chromatin structure (TADs) &
replication timing
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input: contact map W null model E

mrTADFinder:

Identifying TADs at multiple ‘
resolutions by maximizing % B i
modularity . }

VS approp riate null Choose a particular resolution y
‘ptimize Qover all possible panitiory

1
Q= T 2:(VVZJ —YEi;)05,0;  V:resolution parameter

i
Multiple runs to define boundary scores

y=2 for all pairs of adjacient bins

22.0 240 260 280 300 320 340 36.0 consensus boundaries based on

. - : : : . - the boundary scores
y=2.5
22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0
' consensus TADs output

y=3

22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 [Yan et al., PLOS Comp. Bio. (‘17)]
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Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction « Functional impact #2: Non-coding
* Anindividual's disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling o7 ciata generation »  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants « Recurrence:

for key drivers Statistics for driver identification

* Functional impact #1: Coding

_ _ + Background mutation rate significantly varies & is
ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts.

« Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs « LARVA uses parametric beta-binomial model, explicitly
Frustration =5 2 localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes » MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs



Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

» Suppose there are k genome

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; * Binomial(n;,p)

elements. For element /i, define:
— n;: total number of nucleotides

— x;: the number of mutations within the
element

Model 2a: Varying Mutation Rate
with Single Covariate Correction
x; + Binomial(n;,p;)

D; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O'|RL- : constant within the same
covariate rank

— p: the mutation rate
— R;: the covariate rank of the element

» Non-parametric model is useful
when covariate data is missing for
the studied annotations

» Also sidesteps issue of properly

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction
x; + Binomial(n;,p;)

p; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O’lRi : constant within the same
covariate rank

identifying and modeling every
relevant covariate
(possibly hundreds)

[Lochovsky et al. NAR ('15)]

Assume constant background
mutation rate in local regions.

Model 3a: Random
Permutation of Input

Annotations
Shuffle annotations within local

region to assess background
mutation rate.

Model 3b: Random
Permutation of Input Variants
Shuffle variants within local
region to assess background
mutation rate.

[Lochovsky et al. Bioinformatics in press]

50 -



MOAT-a: Annotation-based permutation

% annotation
W permutations

| = original variants
d_max

>

- - o] - w— = ==

.

[Lochovsky et al. Bioinformatics in
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MOAT-v: Variant-based Permutation

Can preserve tri-nt context in shuffle

bin width W

% annotation

| = original variants
- = permuted variants

W=72%d _max

L

=

I
I
I
I
I
I
I
I
I
1

[Lochovsky et al. Bioinformatics in press]
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MOAT-s: a variant on MOAT-v

« A somatic variant simulator
» Given a set of input variants, shuffle to new locations, taking genome structure into

account
| = original variants
B : = permuted variants
Binning whole genome
l | | [ [ I I [ | e

Marking equivalence classes (bins with similar covariate vectors)

Overlaying variants (with tri-nucleotide indexing)

I | l | | | | [ |
: 2. 2 333 33 4444444 55 6 7
Shuffling variants R ——— .
| L g1 ¢ B ey A ¢ L |
2 5 1 43 3444343 4 2 6 5 7
443

[Lochovsky et al. Bioinformatics in press]
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[Lochovsky et al. NAR ('15)]

LARVA Model Comparison

» Comparison of mutation count frequency implied by the binomial model (model 1) and the
beta-binomial model (model 2) relative to the empirical distribution

» The beta-binomial distribution is significantly better, especially for accurately modeling
the over-dispersion of the empirical distribution

density
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[Lochovsky et al. NAR ('15)]

adjusted P w/. correction
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MOAT: recapitulates LARVA
with GPU-driven runtime scalability

Computational efficiency of MOAT's
SLC3A1 Cysteine transporter SLC3A1 promotes breast cancer 28382174 NVIDIATM CUDATM VerS|On, W|th

tumorigenesis

ADRA2B  reduce cancer cell proliferation, invasion, and migration 25026350 res peCt tO th e num be r Of pel"m UtatIOn S y
SIL1 subtype-specific proteins in breast cancer 23386393 : :
TCF24  NA NA is dramatically enhanced compared to
AGAPS significant mutation hotspots in cancer 25261935 ;
TMPRSS13 | Type II transmembrane serine proteases in cancer and viral 19581128 CPU version.

infections

EROIL Overexpression of EROI1L is Associated with Poor Prognosis 26987398

of Gastric Cancer - FOId speedup Of
: nermutations CUDA version

MOAT’s high mutation burden elements 1k 14x
recapitulate LARVA's results & published 10k 100x
noncoding cancer-associated elements.

100k 256X
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Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction « Functional impact #2: Non-coding
* Anindividual's disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling o7 ciata generation »  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants « Recurrence:

for key drivers Statistics for driver identification

* Functional impact #1: Coding

_ _ + Background mutation rate significantly varies & is
ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts.

« Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs « LARVA uses parametric beta-binomial model, explicitly
Frustration =5 2 localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes » MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs



Genomics & Data Science:

Approaches to identifying key variants through functional impact & recurrence

* Introduction + Functional impact #2: Non-coding
* Anindividual’s disease variants as the - FunSeq integrates evidence, with an entropy based
public's gateway into genomics & biology weighting scheme.
* The exponential scaling of data generation «  Prioritizing rare variants with “sensitive sites” (human
& processing conserved)
* Mining the data to prioritize variants  Recurrence:

* Functional impact #1: Coding

for key drivers Statistics for driver identification

+ Background mutation rate significantly varies & is

ALOFT: Annotation of Loss-of-Function correlated with replication timing & TADs

Transcripts. + Developed a variety of parametric & non-parametric

LoF annotation as a complex problem + methods taking this into account

finding deleterious LoFs + LARVA uses parametric beta-binomial model, explicitly
Frustration as a localized metric of SNV modeling covariates

impact. Differential profiles for oncogenes « MOAT does a variety of non-parm. shuffles (annotation,

v. TSGs variants, &c). Useful when explicit covariates not available.

Slower than but speeded up w/ GPUs
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Info about this talk

General PERMISSIONS

This Presentation is copyright Mark Gerstein, Yale University, 2016.
. Please read permissions statement at

gersteinlab.org/misc/permissions.html .
+ Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to

relevant papers or link to gersteinlab.org). Paper references in the talk were mostly from
Papers.GersteinLab.org.

PHOTOS & IMAGES

For thoughts on the source and permissions of many of the photos and clipped images in this
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF
tags, such as kwpotppt , that can be easily queried from flickr, viz:
flickr.com/photos/mbgmbg/tags/kwpotppt
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