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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

Mark Gerstein
Yale

Slides freely 
downloadable from 

Lectures.GersteinLab.org
& “tweetable” 

(via @MarkGerstein). 

No Conflicts for this Talk

See last slide for more info.
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tumor

normal

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.

Personal Genomics 
as a Gateway into Biology
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Personal Genomics 
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Keys to genome interpretation

Relating individuals' variants to DBs

Scaling DBs to the population

Identifying key variants -
separating into rare, recurrent, 
common, &c
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DB Growth: 
explosion 

of data scale
& a diversity of 

uses

• The type of 
sequence data 
deposited has 
changed as well.
- Protected data 

represents an 
increasing fraction of 
all submitted 
sequences.

[Muir	et	al.	(‘15)	GenomeBiol.]
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Sequencing Data Explosion: 
Faster than Moore’s Law?

- In the early 2000’s, 
improvements in Sanger 
sequencing produced a 
scaling pattern similar to 
Moore’s law.

- The advent of NGS was a 
shift to a new technology 
with dramatic decrease in 
cost). 
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• Exponential increase in the 
number of transistors per 
chip.

• Led to improvements in 
speed and miniaturization.

• Drove widespread adoption 
and novel applications of 
computer technology.

Moore’s Law:
Exponential 
Scaling of 
Computer 

Technology

[Waldrop	(‘15)	Nature]
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• Moore’s & Kryder’s 
Laws

- As important as the 
increase in computer 
speed has been, the 
ability to store large 
amounts of information on 
computers is even more 
crucial

• Exponential increase 
seen in Kryder’s law is 
a superposition of 
S-curves for different 
technologies

Kryder’s Law and   
S-curves 

underlying 
exponential growth

[Muir	et	al.	(‘15)	GenomeBiol.]



9
-L

ec
tu

re
s.

G
er

st
ei

nL
ab

.o
rg

The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]
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The changing costs of a sequencing pipeline

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

Alignment algorithms scaling to keep 
pace with data generation
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

Alignment algorithms scaling to keep 
pace with data generation
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The changing costs of a sequencing pipeline

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation
A Typical 
Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger
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Finding Key 
Variants

Germline

• Common variants
• Can be most readily associated with phenotype (ie disease) via GWAS
• Usually their functional effect is weaker
• Many are non-coding
• Issue of LD in identifying the actual causal variant.

• Rare variants
• Associations are usually underpowered due to low frequencies but often have larger 

functional impact
• Can be collapsed in the same element to gain statistical power (burden tests).

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

CAN YOU FIND THE PANDA?
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Finding Key 
Variants

Somatic

• Overall
• Often	these	can	be	thought	of		as very	rare	variants	

• Drivers
• Driver	mutation	is	a	mutation	that	directly	or	indirectly	confers	a	selective	growth	
advantage	to	the	cell	in	which	it	occurs.

• A	typical	tumor	contains	2-8	drivers;	the	remaining	mutations	are	passengers.
• Passengers

• Conceptually,	a	passenger	mutation	has	no	direct	or	indirect	effect	on	the	
selective	growth	advantage	of	the	cell	in	which	it	occurred.

CAN YOU FIND THE PANDA?

Vogelstein B. Science 2013. 339(6127):1546-1558
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding
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• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
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vat.gersteinlab.org

VCF Input 
Output:
• Annotated VCFs
• Graphical representations of 

functional impact on 
transcripts

Access:
• Webserver
• AWS cloud instance
• Source freely available

Habegger	L.*,	Balasubramanian	S.*,	et	al.	Bioinformatics,	2012

Variant Annotation Tool (VAT), developed for 1000G FIG

CLOUD APPLICATION
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Complexities in LOF annotation

Transcript isoforms,
distance to stop,
functional domains,
protein folding,
etc.

Balasubramanian	S.	et	al., Genes	Dev., ’11
Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT

Output:

● Impact score: benign or deleterious.

● Decorated VCF.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17



2
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

LoF distribution varies as expected 
by mutation set (from healthy people v from disease)

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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Application to LoF mutations
in autism spectrum disorder

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT identifies deleterious
somatic LoF variants
Cancer genes:
• COSMIC consensus.
• Enriched in deleterious LoFs.

LoF tolerant genes:
• LoF in the 1KG cohort.
• Depleted in deleterious LoFs.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT refines cancer 
mutation characterization

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17

Vogelstein et al. '13: if >20% of mutations in gene 
inactivating → tumor suppressor gene (TSG).
ALoFT further refines 20/20 rule predictions.
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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What is 
localized 

frustration
?

[Ferreiro	et	al.,	PNAS	(’07)]
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Workflow for evaluating localized frustration changes (∆F)
[K
um

ar
	e
t	a

l.	
N
AR

(2
01

6)
]
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Complexity of the second order 
frustration calculation

T
i
m
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)
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Comparing ∆F values across different 
SNV categories: disease v normal

Loss of 
frustration

Gain of 
frustration

[Kumar	et	al,	NAR (2016)]

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably 
frustrate (less frustrated) surface more than core, 
but for disease mutations (HGMD) 
no trend & greater changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the 
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[K
um

ar
	e
t	a

l,	
N
AR

(2
01

6)
]
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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Funseq: a flexible framework to determine 
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
position) [F

u 
et

 a
l.,

 G
en

om
eB

io
lo

gy
 ('

14
), 

, K
hu

ra
na

 e
t a

l.,
 S

ci
en

ce
 ('

13
)]
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on

Production ENCODE & 1000G Phase 1

(Non-coding	RNA)

(DNase	I	hypersensitive	sites)

Depletion	of	Common	Variants
in	the	Human	Population

Broad	categories	of	
regulatory	regions	under	

negative	selection
Related	to:
ENCODE,	Nature,	2012

Ward	&	Kellis,	Science,	2012
Mu	et	al,	NAR,	2011

(Transcription	factor	binding	sites)

(TFSS: Sequence-specific TFs)
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Differential 
selective 
constraints
among specific 
sub-categories

Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

[Khurana	et	al.,	Science (‘13)]
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Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

Defining 
Sensitive
non-coding 
Regions

[Khurana	et	al.,	Science (‘13)]

Start 677 high-
resolution non-
coding categories; 
Rank & find those 
under strongest 
selection

~0.02% genomic coverage (top 5)
~0.4% genomic coverage  (~ top 25)
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SNPs which break TF motifs are under stronger selection

[Khurana	et	al.,	Science (‘13)]
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FunSeq.gersteinlab.org
HOT	region

Sensitive	region
Polymorphisms

Genome

• Entropy based method for weighting 
consistently many genomic features

• Practical web server 
• Submission of variants & pre-

computed large data context from 
uniformly processing large-scale 
datasets

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show 
higher core scores than controls

3 controls with natural polymorphisms (allele frequency >= 1% )
1.  Matched region:  1kb around HGMD variants
2.  Matched TSS:  matched for distance to TSS
3.  Unmatched: randomly selected

Ritchie	et	al.,	Nature	Methods,	2014 [Fu et al., GenomeBiology ('14, in revision)]
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Flowchart for 1 Prostate Cancer
Genome (from Berger et al. '11)

[K
hu

ra
na

et
 a

l.,
 S

ci
en

ce
(‘1

3)
]
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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Early replicated regions Late replicated regions

Mutation recurrence
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Late replicated regions

Ca
nc
er
	T
yp
e	
1

Ca
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er
	T
yp
e	
2

Ca
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	T
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e	
3

Early replicated regions

Noncoding 
annotations
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Late replicated regions
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1
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Early replicated regions

Noncoding 
annotations
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Cancer 
Somatic 

Mutational 
Heterogeneity, 
across cancer 

types, 
samples & 

regions

[Lochovsky et al. NAR (’15)]
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[Yan et al., PLOS Comp. Bio. (‘17); S. Li et al., PLOS Genetics (‘17)] ]

Variation in somatic mutations 
is closely associated with 
chromatin structure (TADs) & 
replication timing

Chromatin remodeling failure leads to more mutations in 
early-replicating regions 

genomic distance from the TAD boundary

[Lochovsky et al. NAR (‘15)]
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mrTADFinder: 
Identifying TADs at multiple 
resolutions by maximizing 
modularity 
vs appropriate null

[Yan et al., PLOS Comp. Bio. (‘17)]
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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Cancer Somatic Mutation Modeling
• Suppose there are k genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri: the covariate rank of the element

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

[Lochovsky et al. NAR (’15)]

PARAMETRIC MODELS

Model 3a: Random 
Permutation of Input 
Annotations
Shuffle	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2a: Varying Mutation Rate
with Single Covariate Correction

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction

NON-PARAMETRIC MODELS

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume	constant	background	
mutation	rate	in	local	regions.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

[Lochovsky et al. Bioinformatics in 
press]
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MOAT-v: Variant-based Permutation

[Lochovsky et al. Bioinformatics in press]

Can preserve tri-nt context in shuffle
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MOAT-s: a variant on MOAT-v
• A somatic variant simulator

• Given a set of input variants, shuffle to new locations, taking genome structure into 
account

[Lochovsky et al. Bioinformatics in press]
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LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial distribution is significantly better, especially for accurately modeling 

the over-dispersion of the empirical distribution

[Lochovsky et al. NAR (’15)]
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MOAT: recapitulates LARVA 
with GPU-driven runtime scalability

Computational efficiency of MOAT’s 
NVIDIA™ CUDA™ version, with 
respect to the number of permutations, 
is dramatically enhanced compared to 
CPU version.

MOAT’s high mutation burden elements 
recapitulate LARVA’s results & published 
noncoding cancer-associated elements.

Number	of	
permutations

Fold	speedup	of	
CUDA version

1k 14x
10k 100x
100k 256x

..

.

[Lochovsky et al. Bioinformatics in press]
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• An individual's disease variants as the 

public's gateway into genomics & biology
• The exponential scaling of data generation 

& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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Genomics & Data Science: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
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& processing
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. 

• LoF annotation as a complex problem + 
finding deleterious LoFs

• Frustration as a localized metric of SNV 
impact. Differential profiles for oncogenes 
v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an entropy based 

weighting scheme.
• Prioritizing rare variants with “sensitive sites” (human

conserved)
• Recurrence: 

Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs
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Info about this talk

General PERMISSIONS
• This Presentation is copyright Mark Gerstein, Yale University, 2016. 
• Please read permissions statement at 

gersteinlab.org/misc/permissions.html .
• Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to 

relevant papers or link to gersteinlab.org). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this 
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF 
tags, such as  kwpotppt , that can be easily queried from flickr, viz: 
flickr.com/photos/mbgmbg/tags/kwpotppt 


