Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org & "tweetable" (via @markgerstein) See last slide for more info.

RNA-seq

RNA-seq uses next-generation sequencing technologies to reveal RNA presence and quantity within a biological sample.

Quantitative information from RNA-seg signal: average signals at exon level (RPKMs)

ChIP-seq: Creating an Explicit Regulatory Network

- Next generation sequencing techniques (e.g., ChIP-seq, CLIP-seq) predict **gene regulatory factors (RFs)**
- and their target genes
- transcription factors (TFs)
- micro-RNAs

 Less data than RNA-seq but provides explicit notion of regulation

Activity Patterns

- RNA Seq. gives rise to activity patterns of genes & regions in the genome
- Across
 - time (development & disease),
 - different tissues &
 - individuals in a population

Modeling for RNAseq & Chip-seq data across many samples & individuals...

2-sided nature of functional genomics data: Analysis can be very General/Public or Individual/Private

- General quantifications related to overall aspects of a condition & are not tied to an individual's genotype - ie what genes go up in cancer
 - However, data is derived from an individual & tagged with an individual's genotype
- Other calculations aim to use genotype & specific aspects of the quantification to derive general relations related to sequence variation & gene expression
- Some calculations and data derive finding very specific to the variants in a particular individual

Comparative ENCODE Functional Genomics Resource

(EncodeProject.org/comparative)

- Broad sampling of conditions across transcriptomes & regulomes for human, worm & fly
 - embryo & ES cells
 - developmental time course (worm-fly)
- In total: ~3000 datasets (~130B reads)

Time-course gene expression data of worm & fly development

Organism	Major developmental stages	
worm (<i>C. elegans</i>)	33 stages: 0, 0.5, 1,, 12 hours, L1, L2, L3, L4,, Young Adults, Adults	
fly (D. mel.)	30 stages: 0, 2, 4, 6, 8,, 20, 22 hours, L1- L4, Pupaes, Adults	

[Nature 512:445 ('14); doi: 10.1038/nature13424]

Acute Myeloid Leukemia (AML)

Target gene	1824	ENCODE Data (K562, ChIP-seq)
TF	70	National Human Genome Research Institute
Regulatory triplet	50,865	TCGA Data (AML, level 3, RNA-seq) <u>https://tcga-</u> data.nci.nih.gov/tcga/tcgaDownload.jsp
Patient sample	197	THE CANCER GENOME ATLAS

Representative Expression, Genotype, eQTL Datasets

- Genotypes are available from the 1000 Genomes Project
- mRNA sequencing for 462 individuals
 - Publicly available quantification for protein coding genes
- Approximately 3,000 cis-eQTL (FDR<0.05)

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes

• Expression Clustering, Crossspecies

 Optimization gives 16 conserved coexpression modules

State Space Models of Cono Expression

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

Using Logic Gates to Model of Transcriptome Activity

Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)

The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match

• Value of publication patterns generated by the data producing consortia

- Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
- Key role of brokers in data dissemination

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Expression clustering: revisiting an ancient problem

Expression clustering: revisiting an ancient problem

Network modularity

Network modularity

A toy example [orthoclust]

A toy example [orthoclust]

Use Potts model (generalized Ising model) to simultaneously cluster co-expressed genes within an organism as well as orthologs shared between organisms. Here, the ground state configuration correspond to three modules: 1, 2, 4.

Cross-species clusters for worm and fly

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Are gene regulations among orthologs conserved across species?

To what degree can't ortholog expression levels be predicted due to species-specific regulation

Internal & external gene regulatory networks

Internal Group

How to identify gene expression dynamics driven by internal/external regulation?

Interested system	Internal regulatory network	External regulatory network
Cross-species conserved genes	Conserved transcriptional factors (TFs)	Non-conserved TFs
Protein-coding genes	TFs	micro-RNAs
Individual's protein coding genes	Wild-type TFs	Somatic mutated TFs
Protein-coding genes in brain	Commonly expressed TFs	Brain-specific expressed TFs
Protein-coding genes in development	House-keeping TFs	Developmental TFs

State-space model for internal and external gene regulatory networks

State: Gene expression vector of Group *X* at time *t*+1 A_{ij} captures temporal casual influence from Gene *i* to Gene *j* in internal group

State: Gene expression vector of internal group at time *t*

B

Control: Gene expression vector of external factors t at time t

 B_{kl} captures temporal casual influence from external factor k to Gene l in internal group

Effective state space model for meta-genes

 X_{t+1}

Not enough data to estimate state space model for genes (e.g., 25 time points per gene to estimate 4 million elements of A or B for 2000 genes)

$$X_{t+1} = AX_t + BU_t$$

Dimensionality reduction from genes to meta-genes (e.g., SVD)

Effective state space model for meta-genes (e.g., 250 time points to estimate 50 matrix elements if 5 meta-genes)

$$\tilde{X}_{t+1} = \tilde{A}\tilde{X}_t + \tilde{B}\tilde{U}_t$$

[Wang et al. PLOS CB, '16]

Canonical temporal expression trajectories from effective state space model

Flowchart

C. Meta-gene state-space model

Specific Scale of the Data Used

				- Not enough time samp	//65:
Dataset	Internal Group	External Group	Developmental stages	# of unknown parameters in A and B	# of available time samples
worm (<i>C. elegans</i>)	N ₁ =3147 worm-fly orthologs (incl. ortholog TFs)	N ₂ =509 worm-specific transcription factors	T=25 time points: 0, 0.5, 1,, 12 hours	3147*3147+3147*50 9=11.5M	3147*25+509 *25=91400
fly (D. mel.)		N_2 =442 fly-specific transcription factors	T=12 time points: 0, 2, 4, 6, 8,, 20, 22 hours	3147*3147+3147*44 2=11.3M	3147*25+442 *25=89725

Augh

ampleal

[Wang et al. PLOS CB, '16]

Orthologs have correlated iPDP coefficients

Evolutionarily conserved & younger genes exhibit the opposite internal & external PDP coefficients

Ribosomal genes have significantly larger coefficients for the internal than external PDPs, but signaling genes exhibit the opposite trend

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Modeling cooperativity between TFs to target gene using logic gates

An example: selection of the best-matched logic gate

Wang, et al., PLoS Computational Biology, 2015

App. 1 – TF cooperativity in the cell cycle

App. 2 – TF cooperativity in AML

Regulatory triplet from ENCODE	50,865
Patient sample for TCGA AML expression data	197

Human TF-TF-target

RF1	RF2	Common Target Gene (T)	Matched logic gate
ATF3	BDP1	YPEL1	AND
MYC	BCL3	BCR	T=RF1
ATF3	BRF2	AIF1L	AND

Cancer-related TF, MYC, universally amplifies target expression

Restrict to RF1=MYC, giving 2,153 triplets

- RF1 ->-
- **OR**(RF1, RF2)

• **OR**(RF1, **NOT** RF2)

High expression of MYC is sufficient for high target gene expression

c-Myc Is a Universal Amplifier of Expressed Genes in Lymphocytes and Embryonic Stem Cells

Zuqin Nie,^{1,6} Gangqing Hu,^{2,6} Gang Wei,² Kairong Cui,² Arito Yamane,³ Wolfgang Resch,³ Ruoning Wang,⁴ Douglas R. Green,⁴ Lino Tessarollo,⁵ Rafael Casellas,³ Keji Zhao,^{2,*} and David Levens^{1,*} Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

The Conundrum of Genomic Privacy: Is it a Problem?

Yes

Genetic Exceptionalism : The Genome is very fundamental data, potentially very revealing about one's identity & characteristics
Identification Risk: Find that someone participated in a study [eg Craig, Erlich]

Characterization Risk: Finding that you have a particular trait from studying your identified genome [eg Watson ApoE status]

No

Shifting societal foci No one really cares about <u>your</u> genes You might not care

Genomics has similar "Big Data" Dilemma in the Rest of Society

- Sharing & "peerproduction" is central to success of many new ventures, with the same risks as in genomics
 - EG web search: Largescale mining essential

- We confront privacy risks every day we access the internet
- (...or is the genome more exceptional & fundamental?)

Tricky Privacy Considerations in Personal Genomics

- Personal Genomic info. essentially meaningless currently but will it be in 20 yrs? 50 yrs?
 - Genomic sequence very revealing about one's children. Is true consent possible?
 - Once put on the web it can't be taken back
- Culture Clash: Genomics historically has been a proponent of "open data" but not clear personal genomics fits this.
 - Clinical Medline has a very different culture.

- Ethically challenged history of genetics
 - Ownership of the data & what consent means (Hela)
 - Could your genetic data give rise to a product line?

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08; SF Chronicle, 2 Nov. '08; Greenbaum et al. *PLOS CB* ('11); Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]

The Other Side of the Coin: Why we should share

- Sharing helps speed research
 - Large-scale mining of this information is important for medical research
 - Privacy is cumbersome, particularly for big data
- Sharing is important for reproducible research
- Sharing is useful for education
 - More fun to study a known person's genome
 - Eg Zimmer's Game of Genomes in STAT

[Yale Law Roundtable ('10). Comp. in Sci. & Eng. 12:8; D Greenbaum & M Gerstein ('09). Am. J. Bioethics; D Greenbaum & M Gerstein ('10). SF Chronicle, May 2, Page E-4; Greenbaum et al. *PLOS CB* ('11)]

GAME OF GENOMES SEASON 1

The Dilemma

[Economist, 15 Aug '15]

- The individual (harmed?) v the collective (benefits)
 - But do sick patients care about their privacy?
- How to balance risks v rewards Quantification
 - What is acceptable risk? What is acceptable data leakage?
 Can we quantify leakage?
 - Ex: photos of eye color
 - Cost Benefit Analysis: how helpful is identifiable data in genomic research v. potential harm from a breach?

Current Social & Technical Solutions

Closed Data Approach

- Consents
- "Protected" distribution via dbGAP
- Local computes on secure computer
- Issues with Closed Data
 - Non-uniformity of consents & paperwork
 - Different international norms, leading to confusion
 - Encryption & computer security creates burdensome requirements on data sharing & large scale analysis
 - Many schemes get "hacked"

Open Data

- Genomic "test pilots" (ala PGP)?
 - Sports stars & celebrities?
- Some public data & data donation is helpful but is this a realistic solution for an unbiased sample of ~1M

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]

Strawman Hybrid Social & Tech Proposed Solution?

- Fundamentally, researchers have to keep genetic secrets.
 - Need for an (international) legal framework
 - Genetic Licensure & training for individuals (similar to medical license, drivers license)
- Technology to make things easier
 - Cloud computing & enclaves (eg solution of Genomics England)
- Technological barriers shouldn't create a social incentive for "hacking"

- Quantifying Leakage & allowing a small amounts of it
- Careful separation & coupling of private & public data
 - Lightweight, freely accessible secondary datasets coupled to underlying variants
 - Selection of stub & "test pilot" datasets for benchmarking
 - Develop programs on public stubs on your laptop, then move the program to the cloud for private production run

What is a linking attack? Case of Netflix Prize

Movie ratings database

100 million ratings 500,000 users 200 movie ratings/user 5,000 users/movie rating

Anonymized Netflix Prize Training Dataset made available to contestants

User (ID)	Movie (ID)	Date of Rating	Rating [1,2,3,4,5]	
NTFLX-0	NTFLX-19	10/12/2008	1	
NTFLX-1	NTFLX-116	4/23/2009	3	
NTFLX-2	NTFLX-92	5/27/2010	2	
NTFLX-1	NTFLX-666	6/6/2016	5	
			0	

16 = Lecture

Linking Attacks: Case of Netflix Prize

Names available for many users!

User (ID)	Movie (ID)	Date of Grade	Grade [0-10]
IMDB-0	IMDB-173	4/20/2009	5
IMDB-1	IMDB-18	10/18/2008	0
IMDB-2	IMDB-341	5/27/2010	-

- Many users are shared
- The grades of same users are correlated
- A user grades one movie around the same date in two databases

Linking Attacks: Case of Netflix Prize

NETFLIX			Na	mes available for ma	Db any users!		
User (ID)	Movie (ID)	Date of Grade	Grade [1,2,3,4,5]	User (ID)	Movie (ID)	Date of Grade	Grade [0-10]
NTFLX-0	NTFLX-19	10/12/2008	1	IMDB-0	IMDB-173	4/20/2009	5
NTFLX-1	NTFLX-116	4/23/2009	3	IMDB-1	IMDB-18	10/18/2008	0
NTFLX-2	NTFLX-92	5/27/2010	2	IMDB-2	IMDB-341	5/27/2010	-
NTFLX-1	NTFLX-666	6/6/2016	5				

- Many users are shared
- The grades of same users are correlated
- A user grades one movie around the same date in two databases
- IMDB users are public
- NetFLIX and IMdB moves are public

Linking Attacks: Case of Netflix Prize

NETFLIX			Na	mes available for m	Db any users!		
User (ID)	Movie (ID)	Date of Grade	Grade [1,2,3,4,5]	User (ID)	Movie (ID)	Date of Grade	Grade [0-10]
NTFLX-0	NTFLX-19	10/12/2008	1	IMDB-0	IMDB-173	4/20/2009	5
NTFLX-1	NTFLX-116	4/23/2009	3	IMDB-1	IMDB-18	10/18/2008	0
NTFLX-2	NTFLX-92	5/27/2010	2	IMDB-2	IMDB-341	5/27/2010	-
NTFLX-1	NTFLX-666	6/6/2016	5				

- Many users are shared
- The grades of same users are correlated
- A user grades one movie around the same date in two databases

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Light-weight formats

- Some lightweight format clearly separate public & private info., aiding exchange
- Files become much smaller
- Distinction between formats to compute on and those to archive with – become sharper with big data

eQTL Mapping Using RNA-Seq Data

- eQTLs are genomic loci that contribute to variation in mRNA expression levels
- eQTLs provide insights on transcription regulation, and the molecular basis of phenotypic outcomes
- eQTL mapping can be done with RNA-Seq data

Information Content and Predictability

- Higher frequency: Lower ICI
- Lower frequency: Higher ICI
- Additive for multiple variants

- Higher cond. entropy: Lower predictability
- Lower cond. entropy: Higher predictability
- Additive for multiple eQTLs

Per eQTL and ICI Cumulative Leakage versus Genotype Predictability

Colors by absolute correlation

[[]Harmanciet al. Nat. Meth. (in revision)]

Cumulative Leakage versus Joint Predictability

Linking Attack Scenario

Levels of Expression-Genotype Model Simplifications for Genotype Prediction

Success in Linking Attack with Extremity based Genotype Prediction

Success in Linking Attack with Extremity based Genotype Prediction

200 individuals eQTL Discovery 200 individuals in Linking Attack

200 individuals eQTL Discovery 100,200 individuals in Linking Attack

Sensitivity vs PPV for Linkings selected per 1^{st} distance gap, $d_{1,2}$

• Say

- Attacker arbitrarily selects eQTLs with strength >10
- 70% of the individuals are linked correctly...but which 70%?
- Is there a way ahead of time to differentiate linkings based on their reliability?
- 1st Distance Gap:
 - Difference between the genotype distance of 2nd best & 1st best matching individuals

- $d_{1,2} = d_{second} - d_{first}$

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

modENCODE

modENCODE

Worm Genome

modENCODE

1000 Genomes Pilot 1000 Genomes Production

modENCODE

1000 Genomes Pilot

1000 Genomes Production

GTEx

With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE data but were not supported by ENCODE funding & 558 consortium papers supported by ENCODE funding (https://www.encodeproject.org/search/?type=Publication for up-to-date query) Then identified 1,786 ENCODE members & 8,263 non-members.

Co-authorship Network of ENCODE members & Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker
 - co-authorship

Co-authorship Network of ENCODE members & Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker
 - co-authorship

Dynamics of coauthorship network

Similar findings in terms of slow growth trends & broker scientists in the modENCODE consortium as for ENCODE

Year

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes
- Expression Clustering, Crossspecies
 - Optimization gives 16 conserved coexpression modules

State Space Models

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• Using Logic Gates to Model of Transcriptome Activity

 Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC) • The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match
- Value of publication patterns generated by the data producing consortia
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Large-scale Transcriptome Mining:

Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

- Much RNA-seq (+TF ChIP) Data
 - Comparative ENCODE Lots of Matched Data
 - TCGA
 - Geuvadis w/ 1000G genotypes

• Expression Clustering, Crossspecies

 Optimization gives 16 conserved coexpression modules

State Space Models of Cono Expression

of Gene Expression

- Using dimensionality reduction to help determine internal & external drivers
- Decoupling expression changes into those from conserved vs species-specific genes
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

Using Logic Gates to Model of Transcriptome Activity

Preponderance of OR gates in cancer v. cell-cycle (esp. for MYC)

The General

Dilemma of Genomic Privacy

- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social & tech approaches: inconsistencies & burdensome security

RNA-seq: How to Publicly Share it

- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best & 2nd best match

• Value of publication patterns generated by the data producing consortia

- Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
- Key role of brokers in data dissemination

DREISS.gersteinlab.org - D Wang, F He, S Maslov

papers.gersteinlab.org/subject/privacy - D Greenbaum

PrivaSeq.gersteinlab.org - A Harmanci

Acknowledgements

Hiring Postdocs. See gersteinlab.org/jobs !

Loregic.gersteinlab.org - D Wang, KK Yan, C Sisu, C Cheng, J Rozowsky, W Meyerson github.com/gersteinlab/OrthoClust - K Yan, D Wang, J Rozowsky, H Zheng, C Cheng Publication patterns ["encode authors"] - D Wang, KK Yan, J Rozowsky, E Pan

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright Mark Gerstein, Yale University, 2016.
 - Please read permissions statement at www.gersteinlab.org/misc/permissions.html.
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt